
A Relatively Complete Generic Hoare Logic
for Order-Enriched Effects

Sergey Goncharov and Lutz Schröder
Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg

Email: {Sergey.Goncharov, Lutz.Schroeder}@cs.fau.de

Abstract—Monads are the basis of a well-established method of
encapsulating side-effects in semantics and programming. There
have been a number of proposals for monadic program logics
in the setting of plain monads, while much of the recent work
on monadic semantics is concerned with monads on enriched
categories, in particular in domain-theoretic settings, which allow
for recursive monadic programs. Here, we lay out a definition
of order-enriched monad which imposes cpo structure on the
monad itself rather than on base category. Starting from the
observation that order-enrichment of a monad induces a weak
truth-value object, we develop a generic Hoare calculus for
monadic side-effecting programs. For this calculus, we prove
relative completeness via a calculus of weakest preconditions,
which we also relate to strongest postconditions.

I. INTRODUCTION

Side-effects in programming languages come in many shapes
and sizes, including e.g. store and heap dependency, I/O,
exceptions, and resumptions. As a means of organizing such
effects in a uniform manner, thus increasing reusability of
semantics, tools, verification logics, and meta-theory, monads
have been proposed by Moggi [19].

Almost immediately following the discovery of the monadic
programming paradigm, the first monad-based program logics
appeared [23], [21]. One recurring question in this context is
how to come by truth values and predicates. E.g., one may
just assume a hyperdoctrine that determines the predicates, and
then, e.g., explicitly impose that predicates in the state monad
are state-dependent [23]. Alternatively, one may generate the
predicates directly from the monadic structure. The latter
approach is pursued in previous work on monad-based Hoare
logic and dynamic logic [30], [32], [22], which induces from
the underlying monad a canonical notion of predicate that
in particular allows for a principled reconstruction of state
dependency of predicates in the state monad. However, it still
does assume that the truth values are provided by the underlying
category, and hence do not relate to the structure of the monad.
In the present work, we take this program one step further and
generate the truth values from the monad itself.

To this end, we need to impose additional domain-theoretic
structure on the monad, which however is needed anyway in
order to support iteration; we call such monads order-enriched
(to avoid terms such as ‘bounded-complete-dcpo-enriched’).
We emphasize that this structure lives on the monad, not on the
underlying category C, which makes our approach applicable,
e.g., in the following principal cases.

C is the category Set of sets. In this case, we cover
largely the standard examples of effects as long as they account
for non-termination (e.g. while the total state monad TX =
S → (S ×X) is not order-enriched, the partial state monad
TX = S ⇀ (S ×X) is).

C is a category of predomains (e.g. bottomless bounded-
complete dcpo’s); then a monad on C is order-enriched if
computational types accommodate bottom elements and binding
respects existing finite joins on the left.

C is a category of presheaves such as C = [I,Set]
where I is the category of finite sets and injections; one monad
of interest here is the local state monad [25], which we modify
to allow for partiality (and hence order-enrichment):

(TX)n = Sn ⇀

∫ m∈n/I
Sm×Xm

where S : Iop → Set with Sn = V n and the integral denotes
a so-called coend (the intuitive meaning of the integral here is
a sum over m ⊇ n of pairs representing the new state and the
output parametrized by the set m of allocated locations; each
component of this sum corresponds to allocating m− n new
memory cells).
Our notion of predicate is then derived from the underlying
order-enriched monad in a uniform manner using a generic
notion of innocence of programs, a weakening of the generic
notion of purity introduced in [31] — informally, an innocent
program is a deterministic program that reads but does not
write and, unlike a pure program, may fail to terminate. These
notions are defined as (in)equational properties in the spirit
of [8]; one of our core results characterizes the innocent monads
on Set as submonads of reader monads. Truth values are then
simply innocent programs of unit type, thus generalizing the
tests of KAT (Kleene algebra with tests) [17]; as such, they
have nothing to do with a truth value object that may be present
in the base category, and e.g. may a priori be intuitionistic even
on Set. In fact, the truth value object need not in general be a
Heyting algebra, and our approach works also over domain-like
base categories which (due to non-monotonicity of negation)
do not support internal Heyting-algebra objects. Based on
these concepts, we develop a monadic Hoare calculus which —
unlike previous complete monadic program logics [21], [10],
[22] — supports loops.

For this calculus, we prove a relative completeness theorem
in spirit of Cook [5]. Like in the classical case our proof
rests on the concept of weakest (liberal) preconditions. Since

these are related to dynamic logic, it is clear from previous
work [31] that not all monads will provide sufficient support for
them (one counterexample being the continuation monad). We
show that the technique of weakest preconditions applies, in a
precise sense, exactly to those monads that satisfy a mild tech-
nical requirement called sequential compatibility concerning
compatibility of weakest preconditions with monadic binding.

In a closing observation, we relate weakest preconditions
to strongest postconditions. It turns out that while weakest
preconditions exist in general, strongest postconditions may
fail to exist; in natural examples, the existence of strongest
postconditions actually characterizes computational feasibility
properties of a program such as allocating or writing to only
finitely many locations in each execution.

We recall the basics of monad-based side-effects in Sec-
tion II, and introduce our notions of order-enriched monads
and innocence in Sections III and IV. Next, we define an
imperative metalanguage with loops (Section V) as the setting
for our Hoare calculus (Section VI), which we prove relatively
complete via weakest preconditions in Section VII. Finally, we
study strongest postconditions in Section VIII.

II. MONADS FOR COMPUTATIONS

We briefly recall the definition of a strong monad over a (locally
small) Cartesian category C (i.e. category with finite products),
which we fix throughout. When using monads as models of
effects, it is customary to present a monad T as a Kleisli triple
(T, η, --†) consisting of an endomap T over ObC sending an
object A to an object TA of A-valued computations, a family
of morphisms ηA : A → TA, and a Kleisli star operator
that assigns to every morphism f : A → TB a morphism
f† : TA → TB lifting f from A to computations over A.
One typical example (of many) is the state monad, which
has TA = S → (A × S) for a fixed set S of states, so that
morphisms A→ TB may be seen as abstract state-dependent
programs with input from A and output in B; we defer further
examples to Section III. This data are subject to the equations

η† = id f†η = f (f†g)† = f†g†

(for g : C → TA), which ensure that the Kleisli category CT
of T, i.e. the category that has the same objects as C and
C-morphisms A→ TB as morphisms A→ B, is actually a
category, with identities ηA and composition (f, g) 7→ f†g.
It is easy to check that this presentation is equivalent to
the otherwise more standard one via an endofunctor T and
natural transformations η : Id → T (unit) and µ : TT → T
(multiplication). We generally use blackboard capitals T,. . . to
refer to monads and the corresponding Romans T ,. . . to refer
to their functorial parts.

A monad T is strong if it comes with a natural transformation
τA,B : A × TB → T (A × B) called its strength, satisfying
a number of coherence conditions [20]. Strong monads are
precisely those which support programming in terms of
more than one variable, and hence are arguably the only
computationally relevant ones.

Reasoning about strong monads is considerably facilitated
by using Moggi’s computational metalanguage [20]. Important
language features are the ret operator, which just denotes the
monad unit η, and (using Haskell-style do in place of Moggi’s
let) a binding construct do x ← p; q which denotes Kleisli
composition of λx. q with p, with the context propagated using
the strength. Intuitively, retx just returns x as a value without
causing side-effects, and do x ← p; q executes p, binds the
result of the computation to x, and then executes q (which may
depend on x). We will give a full definition of an extended
metalanguage in Section V; for now, we only note that the
language is multisorted and as such involves typed terms in
contexts Γ � p : A where Γ, the context, is a sequence of
pairs xi : Ai presenting a variable that may appear in p and
its type, mentioning every variable at most once. As usual,
contexts are concatenated using comma-separated juxtaposition.
We will refer to p as a program and to A as its return type.
The contexts and the return types are commonly omitted. In
terms of the metalanguage the monad laws can be rewritten as

do x← (do y ← p; q); r = do y ← p;x← q; r

do x← ret a; p = p[a/x]

do x← p; retx = p.

A monad morphism is a natural transformation between the
underlying monad functors satisfying obvious coherence condi-
tions w.r.t. the unit, the Kleisli star (equivalently, multiplication)
and the strength, see e.g. [2] for details. A submonad of a
monad T is a monad S together with a componentwise monic
monad morphism S→ T called the inclusion morphism.

An important issue in this framework is the construction of
effects. Well-behaved constructions tend to be given in terms of
algebraic operations as identified by Plotkin and Power [26]:

Definition 1 (Algebraic operation). Given n ∈ N and a monad
T over C, a natural transformation αX : (TX)n → TX is an
(n-ary) algebraic operation if

for every f ∈ C(A, TB), αB(f†)n = f†αA and

for every A,B ∈ ObC, τ(id×αB) = αA×Bτ
nϑn

where ϑn : A× (TB)n → (A×TB)n is the morphism whose
i-th component is id×πi : A× (TB)n → A× TB.

Thus, an algebraic operation combines several computations
into one in a coherent way. Examples of algebraic operations
include exception raising (T 0 → T), binary nondeterministic
choice (T 2 → T), reading a value ranging over {0, . . . , n− 1}
(Tn → T) and writing some value from/to a memory location
(T 1 → T).

III. ORDER-ENRICHMENT

The notion of monadic side-effect recalled in the previous
section does not provide enough structure to cope with recursion
or loops. Conditions ensuring definability of fixpoint operators
that effectively impose additional domain-like structure on
the base category have been discussed previously [6], [33],
[31]. Here, we pursue the alternative approach to enrich only

2

the monad itself over suitable complete partial orders, thus
broadening the range of applicability of our results as indicated
in the introduction. We call this type of monads order-enriched.
It will turn out that order-enrichment induces sufficient logical
structure on tests for them to serve as truth values; we will base
our generic Hoare logic on this this observation (Section VI).

Definition 2 (Order-enriched monad). A strong monad T over
C is order-enriched if the following conditions are met.

Every hom-set Hom(A, TB) carries a partial order,
denoted v, that has a bottom element denoted by ⊥A,B or
simply ⊥, joins of all directed subsets, and joins of all f, g
such that f v h, g v h for some h (bounded completeness).

For any h ∈ Hom(A′, A) and any u ∈ Hom(B, TB′),
the maps

f 7→ f ◦ h, f 7→ u† ◦ f, f 7→ τ〈id, f〉 (1)

preserve all existing joins (including the empty join ⊥).
Kleisli star is Scott continuous, i.e. if F is a nonempty

directed subset of Hom(A, TB), then
⊔

f∈F f
† =

(⊔
F
)†

.

Most of these conditions, including bounded completeness,
descend from the standard definition of Scott domain. Bounded
completeness turns out to be a critical property needed to
introduce disjunction for our assertion logic in Section V.
The continuity conditions above amount to requiring that
expressions do x ← p; q preserve all existing joins in the
left argument p, and directed joins in the right argument q. As
usual, we denote the meet of f, g : A→ TB by f ug, the join
by f t g, and the top element of Hom(A, TB) by > if they
exist. Next we summarize the most straightforward properties
of order-enriched monads.

Proposition 3. Let T be an order-enriched monad on C, and
let A,B ∈ Ob (C). Then

1) every nonempty subset of Hom(A, TB) having an upper
bound has a least upper bound;

2) every nonempty subset of Hom(A, TB) has a greatest
lower bound;

3) if Hom(A, TB) has a top element, then it is a complete
lattice.

It is now apparent that the type of partial orders we involve
is obtained from the definition of Scott domain by dropping
the algebraicity condition, i.e., essentially, bounded-complete
dcpo’s. Let bdCpo⊥ be the category of such partial orders
with Scott continuous functions as morphisms. This category
is monoidal w.r.t. the standard Cartesian structure induced by
the evident forgetful functor to Set. We would like to relate
our definition of order-enrichment with the standard notion of
enrichment [15]. To that end we first recall a characterization
of algebraic operations essentially proved in [26].

Proposition 4. To give an algebraic operation Tn → T is
the same as to give a Cop ×C-indexed family of maps γA,B :
Hom(A, TB)n → Hom(A, TB) satisfying the conditions

γA,B(f1, . . . , fn) ◦ h = γA′,B(f1 ◦ h, . . . , fn ◦ h) (2)

u† ◦ γA,B(f1, . . . , fn) = γA,B(u† ◦ f1, . . . , u
† ◦ fn) (3)

τ〈id, γA,B(f1, . . . , fn)〉 = γA,B(τ〈id, f1〉, . . . , τ〈id, fn〉) (4)

for any h ∈ Hom(A′, A) and any u ∈ Hom(B, TB′).

This suggests the following definition of partial algebraic
operation, intended to deal with the fact that join is a partial
operation in bounded-complete dcpo’s.

Definition 5 (Partial algebraic operation). A partial algebraic
operation is given by a collection of partial maps of the
form γA,B : Hom(A, TB)n → Hom(A, TB) satisfying the
equations (2)–(4) in the sense that whenever the left-hand side
of an equation exists then so does the right-hand side, and both
sides are equal.

Proposition 6. A monad T is order-enriched iff its Kleisli
category CT is a bdCpo⊥-category, strength is Scott contin-
uous in the second argument, and the finite joins (including
⊥) induced by the order-enrichment are partial algebraic.

There are two ways of adapting the standard examples of
computational monads to the enriched settings: by shifting
to an order-enriched base category C or by modifying the
monad. The first approach is embodied in the following propo-
sition. Let bdCpo be the category of bottomless bounded-
complete dcpo’s and Scott continuous maps. Recall that a
bdCpo-monad is a monad over a bdCpo-category whose
underlying functor is bdCpo-enriched (see e.g. [35]; since
bdCpo is concrete, bdCpo-naturality of the involved natural
transforms is automatic). Combining Proposition 6 with [35,
Theorem 15(b)], we obtain

Proposition 7. A bdCpo-monad is order-enriched if the finite
joins on its Kleisli hom-sets induced by the bdCpo-enrichment
are partial algebraic and have algebraic bottom elements.

Alternatively one can enrich only the monad functor and not the
underlying category, hence allowing, in particular, for C = Set,
which is not bdCpo-enriched.

Example 8 (Order-enriched monad). Most of the standard
examples of computational monads on Set (e.g. exceptions,
state, I/O, see [19]) become order-enriched as soon as we allow
for explicit non-termination. We look explicitly at variants of
the partial state monad, all of which are order-enriched:

1. The partial state monad on Set, with functorial part
TA = S ⇀ (A× S) where S is a fixed set of states and ⇀
denotes partial function space, is order-enriched when equipped
with the extension ordering. (Contrastingly, the total state
monad A 7→ (S → (A× S)) fails to be order-enriched, as it
does not have a bottom element.)

2. The non-deterministic state monad, with functorial part
TA = S → P(A× S), is order-enriched.

3. Applying the exception monad transformer, which maps a
monad T to the monad T (-- +E) for a fixed set E of exception,
to the partial state monad yields the so-called Java monad [14].
This monad is order-enriched and as such yields an example of
binding not preserving ⊥ on the right (do x← raise e;⊥ =

3

raise e 6= ⊥ where raise e stands for raising an exception
e ∈ E).

4. Similarly, preservation of binary joins in q by do x←
p; q fails for non-deterministic monads featuring input or
resumptions [13], [3], [11], essentially for the same reason
that causes the well-known failure of non-deterministic choice
to commute with sequential composition from the left for
parallel processes modulo bisimulation. Again, these monads
do admit order-enrichment.

5. We call the partial state monad TA = S → (A× S)⊥
on bdCpo the domain-theoretic state monad. A typical case
is S = L→ V⊥ where L and V are (possibly infinite) discrete
domains of values and locations, respectively. In this case, Scott
continuity of a state transformer f means essentially that the
output and the value of f(s) at any given location depend on
the values of only finitely many locations under s : L→ V⊥.

6. The topological state monad on Set (!) has a topological
state space S, and TA consists of the continuous partial maps
S ⇀ (A× S) with open domain, where A carries the discrete
topology. Equivalently, TA = S → (A × S)⊥, where for
any space Y , the space Y⊥ = Y ∪ {⊥} carries the topology
generated by the topology of Y (i.e. its opens are Y⊥ and the
opens of Y). One example of interest is S = L → V (total
function space!) for sets L and V — this set does not carry
any natural non-trivial domain structure, but it does carry an
interesting topology, the product topology of L copies of the
discrete space V . Under this topology, continuity of f ∈ TA
means, again, that the value of a location under f(s) and the
output depend only on the values of finitely many locations
under s.

7. The partial local state monad from the introduction is
order-enriched under the obvious extension ordering.

IV. INNOCENCE

Following [29] we next introduce an appropriate notion of
(comparatively) well-behaved computations. To begin, we
recall the notion of commutative monad [16] as based on
a requirement of commutation of programs.

Definition 9 (Commutation). Two programs p and q commute
if the equation

do x← p; y ← q; ret〈x, y〉 = do y ← q;x← p; ret〈x, y〉

holds, where x, y /∈ Vars(p) ∪ Vars(q). If this is true for all
p, q then the monad at hand is commutative.

The core notion of innocence is then defined as follows.

Definition 10 (Innocence). Given an order-enriched monad T,

a program p is copyable if it satisfies the equation
do x← p; y ← p; ret〈x, y〉 = do x← p; ret〈x, x〉;

a program p is weakly discardable if it satisfies the
inequality do y ← p; ret ? v ret ?;

T is innocent if it is commutative and all programs in it
are copyable and weakly discardable.

The conditions defining innocent monads are slightly less
restrictive than those defining pure computations, used for
similar purposes in [29]. Specifically, a monad is pure if
it is innocent and satisfies discardability, i.e. for every p,
do y ← p; ret ? = ret ?.

Intuitively, weakly discardable programs may read but
not write the state, and innocent programs are additionally
deterministic (due to copyability). Computationally interesting
monads typically fail to be innocent but have natural innocent
submonads; this situation is illustrated in Example 12. For
brevity, we fix the following terminology.

Definition 11 (Predicated Monad). A predicated monad is a
pair (T,P) consisting of an order-enriched monad T and an
innocent submonad P of T.

Example 12 (Innocent/Predicated Monads).
The partiality monad P (where PA = A + 1) can be

mapped into any order-enriched monad T by αA(inl(x)) =
ηT(x), αA(inr ?) = ⊥; if η is componentwise monic, then this
makes P an innocent submonad of T. If C = Set and T is free,
i.e. TA = µγ. F (γ+A) for some functor F , then the partiality
monad is the only innocent submonad of T. This covers the
case of exceptions, input, output and resumptions [19].

If T is a partial or non-deterministic state monad
(Example 8) or, e.g., the Java monad of [14] (TA = S ⇀
S×A+E×A), then the partial reader monad (PA = S ⇀ A)
is an innocent submonad of T.

If T is the partial local state monad from the introduction,
then the corresponding partial local reader monad whose
functorial part is given as

(PA)n = Sn ⇀ An

is an innocent submonad of T.

Next, we establish that an innocent monad P yields a truth
value object in a weak sense, P1, on which we will base our
assertion language. Recall that a frame is a complete lattice
in which finite meets distribute over all joins, with frame
homomorphisms preserving finite meets and all joins.

Lemma 13. Let P be an innocent monad. Then p u q =
do p; q = do q; p for Γ � p, q : P1.

Theorem 14. Let P be an innocent monad. Then P1 is a
distributive lattice object in C under the monad ordering,
i.e. its hom-functor Hom(--, P1) factors through distributive
lattices. In fact, Hom(--, P1) factors through frames, i.e. P1
has external joins, and finite meets in P1 distribute over these.

We emphasize that P1 need neither be internally complete
nor residuated, i.e. does not in general support implication
and quantifiers — e.g. in categories of domains, there will
be no sensible objects supporting implication. It is one of the
contributions of this work to show that despite its weakness,
the arising logic does support a relatively complete Hoare logic,
i.e. a weakest precondition calculus. When P1 has additional
logical structure, the weakest precondition calculus will support
this structure as well. We do have

4

Corollary 15. Let P be an innocent monad on Set. Then P1
is a complete Heyting algebra under the monad ordering.

Example 16. In case P is the partial local reader monad,
it is easy to check that P1 is a Boolean algebra (although
the ambient internal logic of the presheaf topos [I,Set] is
intuitionistic).

If P1 is even a Boolean algebra. we say that (T,P) is classical.
However, even on Set, not all monads are classical:

Example 17. The partial state monad has a natural innocent
submonad (in fact, the largest such), the partial reader monad
given by the expression PA = S ⇀ A, so that Ω = P1 can
be identified with the powerset of S, a Boolean algebra. A
simple example where Ω is, in general, non-classical is the
topological state monad. Here, P1 consists essentially of the
continuous functions S → 1⊥. These are in bijection with the
open subsets of S, and hence in general form a proper Heyting
algebra. Finally, the largest innocent submonad of the domain-
theoretic state monad maps A to the continuous function space
S → A⊥, so that in this case, Ω consists essentially of the Scott
open subsets of S, in particular is again in general non-classical
(not even a Heyting algebra). These notions of predicate are
in accordance with the suggestions of [34].

Examples 17 and 12 intimate that an innocent monad might
always be a submonad of some partial reader monad. As the
main result of this section, we establish this for ranked monads
on Set.

Theorem 18. Let P be a ranked innocent monad on Set. Then
P is a submonad of a partial reader monad.

V. A SIMPLE IMPERATIVE METALANGUAGE

Here we consider a first order version of a simple computational
metalanguage for side-effecting programs [20], which is also
reminiscent of the simple imperative language Imp from [27],
[36] and therefore called shortly the imperative meta-language.
Our decision to drop high-order types, analogously to the
previous decision to drop the Scott’s algebraicity condition for
dcpo’s is entirely due to their irrelevance for any of our results
— as such they would only amount to unnecessary restriction
of generality.

Like Moggi’s original meta-language, our language is
generic in the underlying side-effect and in the choice of
basic statements. In a significant step beyond this, it features
unbounded loops.

Let W be a set of basic types. The sets of value types A
and types C are defined by the grammar

A ::= W | 1 | 2 | A×A C ::= A | Ω | TA | PA

where W ranges over W . The intended reading is that TA
and PA are types of computations and innocent computations,
respectively, over A; Ω abbreviates P1 and serves as a type
of truth values. Contrastingly, 2 is the type 1 + 1 of Booleans.
Finally, a predicate type has the form A → Ω where A is a
value type; predicates may be thought of as innocently side-
effecting (intuitively: state-dependent) truth-valued functions.

Term formation rules for simple programs are given in the
top section of Figure 1. They derive typed terms in context
Γ � t : A as explained in Section II; however, we restrict Γ
to contain only variables of value types and predicate types.
Application of ret is restricted to terms of value types to ensure
well-formedness of the resulting type. We fix a signature Σ of
typed functional symbols of the form f : A→ C where A is a
value type and C is a type. When C is not a value type, then
f is a basic program. Typical examples are read and write
operations in a store-based state monad as in Example 8, or non-
deterministic assignment in a non-deterministic state monad.
We assume that Σ contains the usual Boolean operations on 2.

At the same time, we introduce the language of assertions
to be used in our verification logics in the bottom section of
Figure 1. An assertion is a program of return type Ω. Note that
the identification of Ω with P1 entails that the (do) rule can be
applied to show that when Γ�p : PA and Γ, x : A�φ : Ω, then
Γ � do x← p;φ : Ω. We include quantifiers and implication
in the language but emphasize these are supported only when
P1 has sufficient structure, e.g. lives over Set. The intuitive
meaning of the iteration constructor initx ← p while φ do q
is to initialize the variable x by p and then pass it iteratively
though the loop updating it by q (which can itself depend on
x) at every iteration.

Our language offers conjunction and disjunction (but not
in general implication) as well as universal and existential
quantification. Moreover, we allow for fixpoint predicate
constructors µX. φ and νX. φ where X has a predicate type
A→ Ω, omitted in the notation for brevity.

We parametrize the semantics of the simple imperative
metalanguage over a predicated monad (T,P), as well as over
an interpretation of basic types and operations. From now on,
we assume the underlying category C to be distributive [4] (but
not necessarily Cartesian closed); i.e. C has binary coproducts,
and finite products distribute over finite coproducts. Every
basic type W is interpreted as an object JW K in C; this
interpretation is inductively extended to all types by J1K = 1,
J2K = 1+1, JA×BK = JAK×JBK, JΩK = P1, JTAK = T JAK,
JPAK = P JAK. Signature symbols f : A → C ∈ Σ are
interpreted as morphisms JfK : JAK→ JBK.

From now on, we fix a predicated monad (T,P) and an
interpretation of Σ as above.

Since we do not assume function objects in the underlying
category, the interpretation of predicate variables in contexts
requires some care: a context Γ = (x1 : A1; . . . ;xn : An;X1 :
B1 → Ω; . . . ;Xk : Bk → Ω) is interpreted as the pair
(C,H) where C =

q
A1

y
× · · · ×

q
An

y
(a C-object) and

H = Hom(C ×
q
B1

y
,Ω)× · · · ×Hom(C ×

q
Bk

y
,Ω)) (a set).

Programs and assertions Γ � t : A are then interpreted as
maps

q
t
y

: H → Hom(C,
q
A

y
), while second order terms

Γ � φ : A → Ω are interpreted as maps
q
φ
y

: H →
Hom(C ×

q
A

y
,
q
Ω

y
). The interpretation of programs and

assertions is largely standard (see e.g. [19], [4], [10]):
variables, ?, pairing, and projections are interpreted using

the Cartesian structure of C;
0 and 1 are coproduct injections and if-then-else is a

5

x : A in Γ

Γ � x : A

f : A→ C ∈ Σ Γ � t : A

Γ � f(t) : C Γ � ? : 1

Γ � t : A Γ � u : B

Γ � 〈t, u〉 : A×B

Γ � t : A×B
Γ � pr1 t : A

Γ � t : A×B
Γ � pr2 t : B Γ � 0 : 2 Γ � 1 : 2

Γ � p : FA Γ, x : A� q : FB

Γ � do x← p; q : FB
(F ∈ {P, T}) Γ � p : A

Γ � ret p : PA
(A a value type)

Γ � p : PA

Γ � p : TA

Γ � b : 2 Γ � s : C Γ � t : C

Γ � if b thens else t : C

Γ, x : A� b : 2 Γ � p : TA Γ, x : A� q : TA

Γ � initx← p while b do q : TA
. .

Γ � a : Ω
(a ∈ {>,⊥}) Γ, x : A� φ : Ω

Γ �Qx. φ : Ω
(Q ∈ {∃,∀}) Γ, X : A→ Ω � φ : A→ Ω

Γ � ηX. φ : A→ Ω
(η ∈ {µ, ν})

Γ � φ : Ω Γ � ψ : Ω

Γ � φ� ψ : Ω
(� ∈ {∧,∨,→}) X : A→ Ω in Γ

Γ �X : A→ Ω

Γ, x : A� t : Ω

Γ � λx. t : A→ Ω

Γ � t : A Γ � s : A→ Ω

Γ � s(t) : Ω

Fig. 1. Term formation rules for the simple imperative metalanguage (→, ∀, ∃ supported only over Set).

case distinction over the summands of 2 = 1 + 1, interpreted
using the distributive structure of C [4];

do and ret are interpreted using Kleisli star, strength, and
unit of T and P, respectively [19];

Boolean connectives and, if present, quantifiers are inter-
preted using the lattice structure of

q
Ω

y
= P1 (Theorem 14,

Corollary 15).
We treat the semantics of predicate terms and fixpoints in more
detail. Let

q
Γ
y

= (C,H) as above.
A variable Γ �X : A→ Ω is interpreted as a projection

map H → Hom(C ×
q
A

y
,
q
Ω

y
).

Let Γ � t : A, Γ � s : A→ Ω. Then s(t) is interpreted
as the map

q
s(t)

y
: H → Hom(C,

q
Ω

y
) obtained from

q
s
y

:
H → Hom(C ×

q
A

y
,
q
Ω

y
) and

q
t
y

: H → Hom(C,
q
A

y
)

by putting
q
s(t)

y
(h) =

q
s
y
(h) ◦ 〈idC ,

q
t
y
(h)〉 where 〈--, --〉

denotes pairing in C.
Since we do not assume function objects in C and hence

represent predicates Γ � φ : A→ Ω in uncurried form, i.e. as
maps H → Hom(C ×

q
A

y
,
q
Ω

y
), λ-abstraction semantically

does nothing: the interpretation of Γ, x : A is (C ×
q
A

y
, H),

so when Γ, x : A� t : Ω, then
q
t
y

is a map H → Hom(C ×q
A

y
,
q
Ω

y
); we take

q
λx. t

y
to be the same map.

The interpretation of Γ, X : A→ Ω�φ : A→ Ω is a mapq
φ
y

: H×Hom(C×
q
A

y
,
q
Ω

y
)→ Hom(C×

q
A

y
,
q
Ω

y
). We

define the interpretation
q
νX. φ

y
: H → Hom(C×

q
A

y
,
q
Ω

y
)

by taking
q
νX. φ

y
(h) to be the greatest fixpoint of the endomap

on Hom(C ×
q
A

y
,
q
Ω

y
) taking g to

q
φ
y
(h, g), which exists

because by the restrictions on φ this map is monotone and
Hom(C ×

q
A

y
,
q
Ω

y
) is a complete lattice; correspondingly

for least fixpoints µX. φ.

Definition 19. Let
q
Γ
y

= (C,H). An assertion Γ � φ : Ω is
valid (in (T,P)) if

q
φ
y
(h) = > for all h ∈ H .

Remark 20. Predicate variables have the context as an implicit

argument in the semantics. This is necessitated by the absence
of function objects in C. Somewhat informally, it is justified
by the equality

µX : A→ Ω. F (c,X) =

(µX : C ×A→ Ω. λd : C.F (d, λx : A.X(d, x)))(c)

for c : C representing the context (using full higher order
syntax for brevity), correspondingly for ν.

The definition of the semantics of the while loop requires some
preliminaries. First, we introduce an operator ? : 2→ Ω by the
equation φ? = if φ then> else⊥. It is easy to see that 2 carries
a natural Boolean algebra structure, with the complement of
b : 2 denoted b̄.

Lemma 21. The operator ? defines a homomorphism of
distributive lattices.

Lemma 22. Let p, q : TA. Then the join (do b?; p)t(do b̄?; q)
exists and equals (if b thenp else q).

One consequence of this lemma is that if b thenp else q is Scott
continuous in p and q. We can therefore define the semantics
of initx ← retx while b do q (which should be read as an
informal way to denote init y ← retx while b[y/x] do q[y/x]
for some fresh y) as expected, namely as the least fixpoint of
the map p 7→ if b then do x← q; p else retx (where we abuse
the metasymbol p as a function symbol), which exists by Scott
continuity of the expression on the right. Generally:

JΓ � initx← p while b do q : TAK
= JΓ � do x← p; initx← retx while b do q : TAK. (5)

We will prefer the notation (while b do x← p) as a shorthand
for (initx← retx while b do p) in the sequel. As seen in (5),
the general form is expressible using the shortened one. The

6

only drawback of the short syntax is that it is not stable under
variable substitution, but this will play no particular role below.

Remark 23. Unlike in the classical case where fixpoints are
eliminated using Gödel’s β-function, we include them in the
language. Fixpoints naturally arise in standard verification
scenarios, e.g. when reasoning over data structures. For instance,
a monad for singly linked lists can be thought of in terms of
innocent operations emp(x) (test for emptiness of a reference
x), node(x) (data element stored at x), and next(x) (next
location stored at x). We want to relate this type of structure
to abstract lists, e.g specified by a Lisp-like interface nil : L
and cons : A× L→ L with appropriate axioms. If we have
implication and quantification (e.g. Corollary 15), then the type
of lists can be represented using the predicate µX. (X(nil) ∧
(∀a : A, l : L. (X(l)⇒ X(cons(a, l))))). Assuming sufficient
syntactic sugar, we may then define the predicate list(α, x),
stating that reference x points to a linked list representing the
abstract list α, by a least fixpoint:

list(α, x) = (µX. λα, x. emp(x) ∧ α = nil ∨
∃a, β. α = cons(a, β) ∧ node(x) = a∧
∃y.next(x) = y ∧X(β, y))(α, x).

Similarly, greatest fixpoints provide support for coinductive
data, such as streams.

VI. THE HOARE CALCULUS

To support verification of programs in the imperative meta-
language, we introduce Hoare triples of the form

Γ � {φ}x← p{ψ}

where Γ �φ : Ω, Γ � p : A and Γ, x : A�ψ : Ω. As usual we
tend to omit contexts. Formally, the semantics is given by the
equivalence {φ} x ← p {ψ} ⇐⇒ [[x ← (do φ; p)]]ψ. Here,
[[x← p]]ψ is a global evaluation formula [10] defined by the
equivalence

[[x← p]]ψ ⇐⇒ do x← p;ψ; retx = p (6)

and saying informally that after every terminating execution
of x← p, ψ holds for the result x in the poststate. We write
T,P |= {φ} x← q {ψ} if the corresponding equation holds in
T,P under the given interpretation of basic programs (which
we elide in the notation).

Note that this treatment contrasts with the definition
from [29], [32], which is based on assuming a truth value
object in the base category as opposed to extracting an
innocent submonad of T. We do however have an analogous
calculus of Hoare triples as shown in Figure 2. As expected,
the rules are syntax-directed except for (wk). Hoare triples
{φ} x ← f(z) {ψ} for basic programs f : A → TB cannot
be further reduced by the calculus (except by (wk)) and are
expected to be taken from a suitable axiomatization of f
instead.

Syntactic differences with the standard calculus are compara-
tively minor; they are related to the fact that monadic programs
have result values (while programs have only side effects in the

classical setup), to the presence of ret, and to the replacement
of assignment with general basic programs. The semantics
of the calculus, on the other hand, is a broadly generalized
version of the classical setup as already discussed. We will
elucidate later how the classical calculus can be obtained by
instantiation from the generic calculus.

We regard the proof of inequality assertions φ v ψ, needed
for application of (wk), as discharged outside the calculus. We
thus write ∆ `P {φ} x ← q {ψ} whenever {φ} x ← q {ψ}
is derivable in the calculus from axioms ∆ (necessary to deal
with basic programs) and the set of all inequality assertions
φ v ψ valid in (T,P), where in context Γ, φ v ψ is valid if
JΓ � φK v JΓ � ψK.

Theorem 24. The calculus of Figure 2 is sound, i.e. `P
{φ} x← q {ψ} implies T,P |= {φ} x← q {ψ}.

Proof: Straightforward; soundness of (while) is by fixpoint
induction, using the fact that while is a fixpoint of a continuous
functional.

Remark 25. An alternative encoding of Hoare triples into
equational logic is suggested by their treatment in Kleene
algebra with tests (KAT) [18]. Adapted to our setting, this
would lead to the definition of [[x← p]]ψ as

do x← p;¬ψ; retx = do x← p;⊥; retx. (7)

While in KAT, p;¬ψ = p; 0 (i.e. p;¬ψ = 0) is equivalent to
p;ψ = p, (7) fails to be equivalent to (6) in our setting unless ψ
is classical (i.e. ψ∨¬ψ holds). We choose definition (6) for its
better properties; e.g. it makes weakest preconditions commute
with finite conjunctions and does not involve negation.

VII. RELATIVE COMPLETENESS

We proceed to establish a generic relative completeness result
for our Hoare calculus. This result is parametrized over the base
monad, i.e. it holds for a fixed (but, up to mild side conditions,
arbitrary) predicated monad (T,P) and interpretation of the
basic types and programs. This is in keeping with Cook’s
seminal relative completeness theorem [5] for the classical
case, which also works with a fixed interpretation. Like in [5]
the core idea of the our proof is based on the notion of a weakest
(liberal) precondition, which we introduce semantically by

wp(x← p, ψ) =
⊔{

φ | {φ} x← p {ψ}
}
.

for a program p and an assertion ψ. By construction, φ v
wp(x← p, ψ) whenever {φ} x← p {ψ}. Moreover, since do
preserves existing joins in the left argument, wp really yields
a precondition, i.e. we have

Lemma 26. For all p, ψ, {wp(x← p, ψ)} x← p {ψ}.

A crucial ingredient of Cook’s proof in the classical case is the
fact that wp(x← p, ψ) is syntactically definable by induction
over p. Of course, syntactic weakest preconditions for basic
programs f need to be assumed in our setting; that is, we
assume that for every ψ,

wp(x← f(z), ψ) is expressible as an assertion;

7

(ret)
{φ[t/x]} x← ret(t) {φ}

(basic)
{φ} x← f(z) {ψ}
{φ[t/x]} x← f(t) {ψ}

(f ∈ Σ)

(do)
{φ} x← p {ψ} {ψ} y ← q {χ}
{φ} y ← do x← p; q {χ}

(wk)
φ′ v φ {φ} x← p {ψ} ψ v ψ′

{φ′} x← p {ψ′}

(if)
{φ ∧ b?} x← p {ψ} {φ ∧ b̄?} x← q {ψ}

{φ} x← (if b thenp else q) {ψ}
(while)

{ψ ∧ b?} x← p {ψ}
{ψ} x← (while b do x← p) {ψ ∧ b̄?}

Fig. 2. The generic Hoare calculus.

we have an axiom {wp(x ← f(z), ψ)} x ← f(z) {ψ},
which we call WPf .

We denote the set of axioms WPf , f ∈ Σ, by ∆Σ. We then
define a syntactic version wp

s
of wp by

wp
s
(x← f(t), ψ) = wp(x← f(z), ψ)[t/z] (f ∈ Σ, z fresh);

wp
s
(x← ret t, ψ) = ψ[t/x];

wp
s
(x← (do y ← p; q), ψ) = wp

s
(y ← p,wp

s
(x← q, ψ));

wp
s
(x← (if b thenp else q), ψ) =

if b then wp
s
(x← p, ψ) else wp

s
(x← q, ψ);

wp
s
(x← (while b do x← p), ψ) =

(νX. λx. if b then wp
s
(x← p,X(x)) else ψ)(x).

Thus defined, wp
s
(x← q, ψ) is derivably a precondition:

Lemma 27. For all p, ψ,

∆Σ `P {wp
s
(x← p, ψ)} x← p {ψ}.

Hence, wp
s
(x← p, ψ) v wp(x← p, ψ).

To prove that wp
s

is actually the same as wp, we essentially
need to show that wp satisfies the recursive definition of
wp

s
, where the right-to-left implication is shown in the same

way as Lemma 27. For the left-to-right implications, the
only problematic case is do. Indeed, we need to postulate
compatibility of preconditions with sequential composition as
an additional requirement on the underlying monad:

Lemma and Definition 28 (Sequential Compatibility). For
programs p, q and an assertion ψ, we have

wp(x← (do y ← p; q), ψ) v wp(y ← p,wp(x← q, ψ))

iff

[[x← (do y ← p; q)]]ψ implies [[y ← p]] wp(x← q, ψ)

If these conditions hold for all p, q, ψ, we say that (T,P) is
sequentially compatible.

Remark 29. Sequential compatibility is reminiscent of the
definition of a monad admitting dynamic logic [31], a notable
difference being that in order-enriched monads, wp becomes
definable, so that only its properties instead of its existence

need to be postulated. Mutatis mutandis, essentially the same
counterexample as in [31], a continuation monad, shows that
not all monads are sequentially compatible.

Lemma 30. Let (T,P) be sequentially compatible. Then
wp

s
(x← p, ψ) w wp(x← p, ψ) for all p, ψ.

Proof: Induction over p.
The generic relative completeness theorem is now immediate:

Theorem 31 (Generic Relative Completeness). Let (T,P) be
sequentially compatible. Then T,P |= {φ} x← p {ψ} implies
∆Σ `P {φ} x← p {ψ}.

Proof: Let T,P |= {φ} x← p {ψ}. Then the inequality
assertion φ v wp(x ← p, ψ), which is expressible by
Lemmas 27 and 30, is valid in P and hence can be used to derive
{φ} x ← p {ψ} by (wk) from {wp(x ← p, ψ)} x ← p {ψ}.
The latter is derivable by Lemma 27.

Example 32. The generic relative completeness theorem
instantiates to relative completeness of our Hoare calculus
over any of the monads listed in Example 8 (as all these
monads are easily shown to be sequentially compatible). The
concrete instantiation depends, of course, on the choice of
basic programs. We consider some examples in more detail:

1. Partial state monad: Working with a state set S = L→
V where L is a set of locations and V is a set of values
(say, natural numbers), we can introduce a type V to represent
the set of values, and basic programs writel : V → T1 and
read l : PV with the expected interpretation for each l ∈ L.
We thus recover the standard Hoare calculus by introducing
axioms capturing the usual weakest preconditions,

wp(writel(z), ψ) = ψ′

where ψ′ is obtained from ψ by replacing all occurrences of
read l with ret(z). In this case, our generic completeness result
instantiates exactly to Cook’s relative completeness theorem [5].

2. Non-deterministic state monad: In otherwise the same
setup as above, we can introduce non-deterministic basic
programs, such as the havoc construct found in Boogie [1] and
ESC/Java [7], which assigns an arbitrary value to a location. In
this case, we have to specify wp(havocl, ψ) = ∀z. ψ′ where as
above, ψ′ is obtained from ψ by replacing all occurrences of

8

read l with ret(z). Similarly, we can specify a non-deterministic
coin toss : T2 with wp(x ← toss, ψ) = ψ[⊥/x] ∧ ψ[>/x],
which then allows coding binary nondeterministic choice as
p + q = if toss thenp else q, and non-deterministic iteration
as initx ← retx inx ← p? = while toss do x ← p. Our
framework yields a relatively complete Hoare calculus for
such languages.

3. Additional computational features: Our calculus remains
sound and relatively complete when features such as exceptions,
resumptions (used for modelling interleaving parallelism) or
local state are added. In order to verify properties of interest
for programs using these features, one does need additional
logical scaffolding beyond the simplistic before-after of Hoare
logic — e.g. abnormal postconditions to deal with exceptions,
and stepwise invariants for resumptions. However, the basic
Hoare calculus remains a crucial ingredient in the verification
of such programs, and in fact some of the extended features
required in the full verification logic can be encoded into the
base calculus [30], [9].

4. Domain-theoretic and topological state monads: For
these monads, we obtain the same results as indicated above
but now for a non-classical assertion language. In other words,
we show that classicality of the assertion logic is inessential
for purposes of relative completeness; an added benefit of the
non-classical setup is that we now know more about assertions
— specifically that they are open subsets of the state space,
which in the cases discussed in Example 8 means they are
determined locally by finite information.

VIII. STRONGEST POSTCONDITIONS

In the classical setting, one has a dual calculus of strongest
postconditions complementing weakest preconditions. In the
general case, it turns out the situation is more complicated.
Since Ω is a frame, we can, of course, put

sp(x, p) =
l{

φ | [[x← p]]φ
}
.

We can then accommodate preconditions by precomposing
them with programs: sp(φ, x, p) := sp(x, do φ; p). However,
unlike in the dual case of weakest preconditions, it will turn out
that sp(x, p) is not always a postcondition of p. We therefore
introduce specific terminology for the positive case:

Definition 33 (Admitting Strongest Postconditions). Let (T,P)
be a predicated monad. We say that (T,P) admits strongest
postconditions if

[[x← p]] sp(x, p)

for every program p. A program p admits strongest postcondi-
tions if {φ} x← p {sp(φ, x, p)} for all φ.

Proposition 34. Let (T,P) be a predicated monad that admits
strongest postconditions. Then the following are equivalent.

1) (T,P) is sequentially compatible.
2) For all p, q, ψ, [[x ← (do y ← p; q)]]ψ implies that

sp(y, p) v wp(x← q, ψ) is valid in P.
3) For all p, q, {sp(y, p)} x← q {sp(x, do y ← p; q)}.

In the classical case, strongest postconditions always exist:

Proposition 35. Let (T,P) be a predicated monad. If P1 is
classical then (T,P) admits strongest postconditions.

The proof makes use of the ‘drinker’s paradox’ in the form∨
i(ai ⇒

∧
i ai), which depends on classicality. If P1 is not

classical, it may happen that not all programs admit strongest
postconditions; the following examples suggest that admitting
strongest postconditions relates to computational feasibility.

Example 36. 1. Domain-theoretic state monad: A program
p : S → (A× S)⊥ has a strongest postcondition iff its image
has a Scott open hull. Thus, for algebraic S, a Scott continuous
state transformer f : S → (A × S)⊥ admits strongest
postconditions iff f is a compact element of S → (A× S)⊥,
i.e. preserves compact elements. E.g. for S = L→ V⊥ as in
Example 8, the compact elements of S are the finite states, i.e.
those with only finitely many allocated locations. Then, a state
transformer f : S → (A×S)⊥ admits strongest postconditions,
i.e. is compact, iff it allocates only finitely many locations when
run from a finite state s.

2. Topological State Monad: When the state set S is T1,
then only open sets have open hulls, so that a continuous state
transformer f : S → (A×S)⊥ admits strongest postconditions
iff f is open. (In particular, it is not generally case that compact
elements of TA admit strongest postconditions. Comparing this
to the above, note that the Scott topology is only T0). When S
is Stone, i.e. compact Hausdorff with a clopen base, then this
means that f preserves clopens. E.g., in the case S = L→ V
as in Example 8 (which is a Stone space), the clopens are
precisely the subsets of S defined by constraints on finitely
many locations — that is, admitting strongest postconditions
means writing only to finitely many locations.

IX. CONCLUSION AND RELATED WORK

We have introduced a Hoare logic for programs with order-
enriched effects encapsulated as monads. For this logic, we
have proved relative completeness. This result is formulated as
a generic completeness theorem, instantiated to completeness
results for numerous monadic models; e.g. it reproduces
Cook’s original completeness result but also a range of further
completeness theorems for programs with additional or different
computational effects, with more powerful basic operations,
and with different assertion logics including logics of (Scott)
open sets. Our formalisation utilizes the approach of domain
theory in combination with recent developments on algebraic
operations for computational effects [24], [25], [26]. This
allows for a seamless integration of the assertion language
with the programing language. In particular, we have shown
that appropriate enrichment of a monad yields a natural frame
structure on a submonad of innocent computations.

The way of enriching the monad we use is more general than
the standard approach by enriching the underlying category.
Instead we essentially enrich the corresponding Kleisli category.
A form of monad enrichment similar to ours appears in [12]

9

for the entirely different purpose of defining trace semantics
of coalgebraic languages.

X. FURTHER WORK

Although our assertion language extends intuitionistic first order
logic in case the underlying category is Set, it is quite weak in
the general case, and, e.g., does not in general have implication;
we emphasize that this actually lends additional strength to our
relative completeness result. General criteria under which the
assertion language does support full intuitionistic first-order
logic are under investigation. Whereas we currently do not have
a perspective to induce such a structure solely from properties
of the base category in any interesting cases other than Set, in
view of Theorem 18 there is hope to obtain a strong logic of
assertions by using properties of the category in combination
with the innocence condition. The direction of primary interest
in this respect is the case when the base category is a topos.
We expect that the chances to succeed in endowing P1 with
a complete Heyting algebra critically depend the enrichment
of P being compatible with the notion of partiality offered by
the topos. E.g. one can argue that assertions over the partial
state monad S ⇀ (X × S) considered over a topos support
intuitionistic first-order logic once the partial function type is
interpreted in such a way that X ⇀ 1 is isomorphic to P(X).

Additional perspectives for further work include coverage
for computational effects whose full specification escapes the
basic before/after paradigm that underlies Hoare logic, such as
I/O, exceptions, and numerical probabilities — our calculus is
sound and complete for monads with such features but does
not express all of the requisite properties, such as abnormal
termination. We expect some of these features to be encodable
into the basic setting by means of additional observational
operations in the spirit of [30]; a true conceptual unification
of verification logics for these features however remains the
subject of ongoing investigations. Orthogonally to these efforts,
we are also working on an extension of our calculus with
separation logic features [28] using the tensor product of
monads as a generic counterpart of effect separation.

REFERENCES

[1] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
Formal Methods for Components and Objects, FMCO 2005, volume
4111 of LNCS, pages 364–387. Springer, 2006.

[2] M. Barr and C. Wells. Toposes, Triples and Theories, volume 278 of
Grundlehren der mathematischen Wissenschaften. Springer, 1985.

[3] P. Cenciarelli and E. Moggi. A syntactic approach to modularity in
denotational semantics. In Category Theory and Computer Science,
CTCS 1993, 1993.

[4] J. R. B. Cockett. Introduction to distributive categories. Mathematical
Structures in Computer Science, 3(3):277–307, 1993.

[5] S. A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM J. Comput., pages 70–90, 1978.

[6] R. Crole and A. Pitts. New foundations for fixpoint computations. In
Logic in Computer Science, LICS 1990, pages 489–497. IEEE Computer
Society, 1990.

[7] C. Flanagan and S. Qadeer. Predicate abstraction for software verification.
In Principles of Programming Languages, POPL 2002, pages 191–202.
ACM, 2002.

[8] C. Führmann. Varieties of effects. In Foundations of Software Science
and Computation Structures, volume 2303 of LNCS, pages 144–158.
Springer, 2002.

[9] S. Goncharov and L. Schröder. A coinductive calculus for asynchronous
side-effecting processes. In O. Owe, M. Steffen, and J. A. Telle, editors,
Fundamentals of Computation Theory (FCT 2011), volume 6914 of
Lecture Notes in Computer Science. Springer, 2011.

[10] S. Goncharov, L. Schröder, and T. Mossakowski. Completeness of global
evaluation logic. In Mathematical Foundations of Computer Science,
MFCS 2006, volume 4162 of LNCS, pages 447–458. Springer, 2006.

[11] W. Harrison. The essence of multitasking. In Algebraic Methodology
and Software Technology, AMAST 2006, volume 4019 of LNCS, pages
158–172. Springer, 2006.

[12] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via
coinduction. In Logical Methods in Comp. Sci, page 2007, 2007.

[13] M. Hennessy and G. Plotkin. Full abstraction for a simple parallel
programming language. In MFCS, pages 108–120, 1979.

[14] B. Jacobs and E. Poll. Coalgebras and Monads in the Semantics of Java.
Theoret. Comput. Sci., 291:329–349, 2003.

[15] M. Kelly. Basic Concepts of Enriched Category Theory. Number 64
in London Mathematical Society Lecture Notes. Cambridge University
Press, 1982.

[16] A. Kock. Strong functors and monoidal monads. Archiv der Mathematik,
23(1):113–120, 1972.

[17] D. Kozen. Kleene algebra with tests. Transactions on Programming
Languages and Systems, 19(3):427–443, May 1997.

[18] D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans.
Comput. Logic, 1(1):60–76, July 2000.

[19] E. Moggi. A modular approach to denotational semantics. In Category
Theory and Computer Science, CTCS 1991, volume 530 of LNCS, pages
138–139. Springer, 1991.

[20] E. Moggi. Notions of computation and monads. Inf. Comput., 93:55–92,
1991.

[21] E. Moggi. A semantics for evaluation logic. Fund. Inform., 22:117–152,
1995.

[22] T. Mossakowski, L. Schröder, and S. Goncharov. A generic complete
dynamic logic for reasoning about purity and effects. Formal Asp.
Comput., 22:363–384, 2010.

[23] A. Pitts. Evaluation logic. In Higher Order Workshop, Workshops in
Computing, pages 162–189. Springer, 1991.

[24] G. Plotkin and J. Power. Adequacy for algebraic effects. In Foundations
of Software Science and Computation Structures, FoSSaCS 2001, volume
2030 of LNCS, pages 1–24. Springer, 2001.

[25] G. Plotkin and J. Power. Notions of computation determine monads. In
Foundations of Software Science and Computation Structures, FoSSaCS
2002, volume 2303 of LNCS, pages 342–356. Springer, 2002.

[26] G. Plotkin and J. Power. Algebraic operations and generic effects. Appl.
Cat. Struct., 11:69–94, 2003.

[27] J. Reynolds. Theories of Programming Languages. Cambridge University
Press, 1998.

[28] J. Reynolds. Separation logic: A logic for shared mutable data structures.
In Logic in Computer Science, LICS 2002, pages 55–74. IEEE Computer
Society, 2002.

[29] L. Schröder and T. Mossakowski. Monad-independent Hoare logic in
HasCASL. In Fundamental Aspects of Software Engineering, FASE 2003,
volume 2621 of LNCS, pages 261–277, 2003.

[30] L. Schröder and T. Mossakowski. Generic exception handling and the
Java monad. In Algebraic Methodology and Software Technology, AMAST
2004, volume 3116 of LNCS, pages 443–459. Springer, 2004.

[31] L. Schröder and T. Mossakowski. Monad-independent dynamic logic in
HasCASL. J. Logic Comput., 14:571–619, 2004.

[32] L. Schröder and T. Mossakowski. Hascasl: Integrated higher-order
specification and program development. Theoret. Comput. Sci., 410:1217–
1260, 2009.

[33] A. K. Simpson. Recursive types in Kleisli categories. Technical report,
MFPS Tutorial, April 2007, 1992.

[34] M. Smyth. Power domains and predicate transformers: A topological
view. In Automata, Languages and Programming, ICALP 1983, volume
154 of LNCS, pages 662–675. Springer, 1983.

[35] R. Street. The formal theory of monads. Journal of Pure and Applied
Algebra, 2:149–168, 1972.

[36] G. Winskel. The Formal Semantics of Programming Languages. MIT
Press, 1993.

10

