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Abstract
Fuzzy description logics (DLs) serve as a tool
to handle vagueness in real-world knowledge.
There is particular interest in logics implement-
ing Łukasiewicz semantics, which has a number
of favourable properties. Current decision pro-
cedures for Łukasiewicz fuzzy DLs work by re-
duction to exponentially large mixed integer pro-
gramming problems. Here, we present a decision
method that stays closer to logical syntax, a labelled
tableau algorithm for Łukasiewicz FuzzyALC that
calls only on (pure) linear programming, and this
only to decide atomic clashes. The algorithm re-
alizes the best known complexity bound, NEXP-
TIME. Our language features a novel style of fuzzy
ABoxes that work with comparisons of truth de-
grees rather than explicit numerical bounds.

1 Introduction
Fuzzy logic has been introduced as a formalism for han-
dling vagueness in real-world knowledge, which occurs, e.g.,
in everyday concepts such as ‘tall person’ and in modern-
day notions such as ‘good match with my service request’.
Consequently, there has been increasing interest in descrip-
tion logics incorporating fuzzy truth values [Straccia, 2001;
Lukasiewicz and Straccia, 2008]. A key feature of logics
such as fuzzy ALC is that not only concepts but also roles
are fuzzified, i.e. allowed to attain truth values in the unit in-
terval in place of just binary truth values. Typical examples
are vague relations such as ‘likes’, ‘matches’, or ‘is preferred
over’. For the underlying propositional logic, one has a wide
variety of proposed semantics (see [Metcalfe et al., 2008] for
an overview). One widely accepted choice for the interpre-
tation of propositional connectives that leads to a both math-
ematically well-behaved [Kundu and Chen, 1998] and logi-
cally expressive framework is to adopt Łukasiewicz semantics
where propositional connectives are interpreted in the (uni-
versal) MV-algebra [0, 1].

Semantic decision procedures for various Łukasiewicz
Fuzzy DLs have been described in the literature [Straccia,
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2005; Straccia and Bobillo, 2007]. The best known upper
bound to date for Łukasiewicz Fuzzy ALC is NEXPTIME
(it is known that finite valued Łukasiewicz modal logic is
PSPACE-complete [Bou et al., 2011] but this does not ap-
pear to extend easily to the case of infinitely many truth val-
ues); this bound has been established in [Schröder and Pat-
tinson, 2011; Cerami and Straccia, 2013] and may also be
derived by analysing the complexity of the algorithms pre-
sented in [Straccia, 2005; Straccia and Bobillo, 2007]. In all
cases, the algorithms work by reducing reasoning problems
to exponentially large mixed integer programming problems.

Here, we present an algorithm for Łukasiewicz FuzzyALC
that works in a more familiar tableau style; in particular,
it handles natural syntactic objects. Specifically, it imple-
ments a branching labelled tableau calculus that manipulates
ABoxes consisting of linear inequalities over concept and role
assertions. Only at the leaves of the tableau tree, we call lin-
ear programming (rather than mixed integer programming) to
detect clashes among atomic assertions.

We envisage the following benefits of this approach:

• Presenting ABoxes in terms of inequalities among asser-
tions is more appropriate to the goal of representing vague
knowledge than the explicit numerical bounds employed pre-
viously. Essentially, our logic admits ABoxes saying things
such as ‘Bob (tragically) likes Alice more than Alice likes
Bob’ or ‘the cumulative aptitude of all team members does
not meet the requirements of the project’ but does not directly
support statements of the form ‘John is tall to the degree at
least 0.394’. Although truth constants would be easy to add
to the calculus (and in fact can be emulated by McNaughton’s
theorem [McNaughton, 1951]), we explicitly prefer the for-
mer style of asserting individual knowledge on the grounds
that it is unclear how precise numerical values such as 0.394
would be sensibly determined in an ontology. This corre-
sponds to views expressed in the philosophical analysis of
fuzzy truth degrees, see, e.g., [Smith, 2012] and references
therein including [Goguen, 1968].
• Our calculus is simple and natural, and as such enables

clear proofs of termination and correctness. By comparison,
e.g. the blocking condition of [Straccia and Bobillo, 2007]
causes incompleteness as noted in [Baader and Peñaloza,
2011] (as it must, since the algorithm works with general
TBoxes, which actually cause undecidability [Cerami and
Straccia, 2013]; note that the latter work does give a full com-



pleteness proof for the case of acyclic TBoxes).
• While existing algorithms for Łukasiewicz Fuzzy ALC

always fully expand the target concept, and, e.g., will insist
on always expanding the existential restriction when checking
satisfiability in A t ∃R.C, our calculus will, given the right
heuristics (e.g. expand simple concepts first, see Example
4.7), be happy to close the tableau early by just satisfying
the left disjunct. In other words, previous algorithms always
exhibit worst-case behaviour, while our tableau method offers
the prospect of feasible average-case behaviour.

Related Work. Besides the mentioned work [Straccia,
2005; Straccia and Bobillo, 2007; Schröder and Pattinson,
2011] on Łukasiewicz Fuzzy ALC, e.g., Straccia [2001] and
Stoilos et al. [2007] deal with modal logics of vagueness over
other (fuzzy) base logics, in particular using the Zadeh in-
terpretation of propositional connectives. The comparision
expressions in [Kang et al., 2006] do not permit general lin-
ear inequalities and also use Zadeh semantics for proposi-
tional connectives. Proof theory for Łukasiewicz Logic cen-
tres around the propositional and first-order setup [Ciabat-
toni et al., 2005; Olivetti, 2003; Fermüller and Metcalfe,
2009] (despite the title, Montagna [2003] does not treat the
modal analog of fuzzy ALC). Our approach is inspired by
Hähnle [1994] where satisfiability is reduced to feasibility of
linear programming problems. Satisfiability in propositional
Łukasiewicz logic is known to be in NP.

2 Syntax and Semantics of Fuzzy ALC
We recall the definition of Łukasiewicz Fuzzy ALC follow-
ing [Straccia, 2005] but with a more expressive notion of
ABox. The syntax of concepts is the same as in standard
ALC, i.e. given sets NC and NR of atomic concepts and roles,
respectively, concepts are defined by the grammar

C,D ::= ⊥ | A | ¬C | C uD | ∃R.C (A ∈ NC, R ∈ NR).

The nesting depth of ∃ in a concept C is called the quan-
tifier rank of C, denoted rk(C). As Łukasiewicz semantics
validates the respective equivalences, we can put C t D =
¬(¬C u ¬D), C → D = ¬C tD, and ∀R.C = ¬∃R.¬C
as usual. The semantics of the language is then defined over
fuzzy interpretations I = (∆I , (AI)A∈NC

, (RI)R∈NR
) that

consist of
• a set ∆I , the domain;
• a map AI : ∆I → [0, 1] for each A ∈ NC;
• a map RI : ∆I ×∆I → [0, 1] for each R ∈ NR;

— i.e. AI is a fuzzy subset of ∆ and RI a fuzzy binary rela-
tion over ∆, for each atomic concept A ∈ NC and each role
R ∈ NR. We extend the interpretation by fuzzy subsets to all
concepts C, defining CI : ∆I → [0, 1] by

(∃C)I(d) = sup
e∈∆I

(RI(d, e)⊗ CI(e)) ⊥I(d) = 0

(¬C)I(d) = 1− CI(d) (C uD)I(d) = CI(d)⊗DI(d)

where a ⊗ b = max(a + b − 1, 0). A concept C is valid if
CI(d) = 1 for all fuzzy interpretations I and all d ∈ ∆I , in
which case we write |= C. Dually, C is satisfiable if ¬C is

not valid. Thus, C is satisfiable if CI(d) > 0 for some point
d ∈ ∆I in some fuzzy interpretation I.

Łukasiewicz semantics of fuzzy logic has several desir-
able properties that fail in alternative definitions, in particular
residuatedness (i.e. conjunction and implication are mutually
adjoint) and continuity of all operators, see e.g. [Kundu and
Chen, 1998].

Example 2.1. Maybe somewhat surprisingly, the concept

∀ likes. tall u ∃ likes. blond u ¬∃ likes. (tall u blond)

is satisfiable: take a fuzzy interpretation where ∆I contains
d, e with likesI(d, e) = 0.5 = tallI(e), likesI(d, f) = 0 for
f 6= e, and blondI(e) = 1. What is ultimately behind this
is the fact that Łukasiewicz Fuzzy logic is not idempotent;
in this case: likesI(d, e) ⊗ tallI(e) = 0.5 ⊗ 0.5 = 0. In
other words, Łukasiewicz semantics is ‘resource-aware’. As
shown in [Kundu and Chen, 1998], the failure of idempotence
is unavoidable for logics satisfying certain desirable proper-
ties enabled by Łukasiewicz semantics. For many application
scenarios, this is a feature rather than a bug; e.g. when casting
a movie role for which we want a talented and popular actor
(Tu P), we might indeed be inclined to regard someone who
displays only moderate talent (T = 0.5) and is only mildly
popular (P = 0.5) as altogether unsuitable (T u P = 0).

We will reduce the problem of concept satisfiability to that
of ABox satisfiability where we take ABoxes to be sets of
linear inequalities relating membership of named individuals
in concepts and roles. Formally, given a set IN of individual
names, an ABox assertion is a linear inequality∑
i∈I

ai :Ci+
∑
j∈J

(aj , bj) :Rj >z

∑
k∈K

ak :Ck+
∑
l∈L

(al, bk) :Rl

where subscripted occurrences of a, b, C andR are individual
names, concepts and role names, respectively and z ∈ Z is an
integer, with n >z m abbreviating n + z > m. An ABox
is a finite set of ABox assertions. Terms of the form a : C
and (a, b) : R as in ABox assertions are called concept asser-
tions and role assertions, respectively. If Γ =

∑
i∈I ai:Ci +∑

j∈J(aj , bj):Rj is a formal sum of concept and role asser-
tions and I additionally assigns elements iI to individuals,
we put ΓI =

∑
i∈I C

I
i (aIi )+

∑
j∈J R

I(aIj , b
I
j ) and say that

I satisfies an ABox assertion Γ >z ∆ if z + ΓI > ∆I .
That is, we require the linear inequality to hold if concepts
and roles are replaced by their meaning. An interpretation I
satisfies an ABox A if it satisfies all elements, this is written
I |= A. Finally, an ABox A is satisfiable if I |= A for some
interpretation I. We use standard notational conventions and
denote unions of ABoxes in the form A1 | A2.

Remark 2.2. There are a number of alternative options re-
garding the particular shape of ABoxes: we could have used
non-strict rather than strict inequality (or a mix of both), and
we could have admitted scalars in linear inequalities. While
McNaughton’s Theorem [McNaughton, 1951] shows that ra-
tional scalars are redundant technically, our argument for not
including them is philosophical, as statements like ’my hat is
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1.27 times as red as yours’ seem to be of only limited mean-
ingfulness. The formulation of ABoxes in terms of strict in-
equalities dualizes the validity problem, and admitting non-
strict inequalities in addition to strict inequalities poses no
technical difficulties.
Example 2.3. While McNaughton’s Theorem [McNaughton,
1951] implicitly allows us to formulate linear inequalities
involving satisfaction of concepts at a single individual in
the style used in previous frameworks, i.e. as simple lower
bounds a : C > α, the formulation of ABoxes as linear
inequalities is strictly more powerful as it can also describe
relations between role assertions and relations between con-
cepts satisfied by different individuals. Our notion of ABox
may thus be seen as a fuzzy variant of Boolean ABoxes [Are-
ces et al., 2003; Liu et al., 2006]. Using linear inequalities
in ABoxes, we can e.g. express Bob’s tragic plight as in the
introduction using the ABox assertion

(Bob,Alice) : likes > (Alice,Bob) : likes.

Similarly, the inadequacy of the team consisting of Alice,
Bob, and Charlie to the task at hand can be expressed by

Project : ∃demands.Skill >

Bob : compt + Alice : compt + Charlie : compt

where compt abbreviates ∃has.Skill.

3 The Tableau Calculus
We now introduce the tableau calculus for Łukasiewicz Fuzzy
ALC. Semantically, the main difficulty is that although Fuzzy
ALC does have the tree model property [Schröder and Pat-
tinson, 2011], one has to deal with arithmetic dependencies
between different branches in the model. Syntactically these
dependencies are captured using labels in ABox assertions.
The primitive objects handled in our calculus are not concepts
but instead linear inequalities between concepts and roles, i.e.
ABox assertions which play a role similar to that of concept
assertions and role assertions in the classical case. In particu-
lar, satisfaction of an ABox assertion under an interpretation
is two-valued in the same way as satisfaction of concept and
role assertions in the classical case.

We introduce a Beth-style tableau calculus for determin-
ing satisfiability of ABoxes and prove its soundness and com-
pleteness, i.e. unsatisfiability of an ABox A is equivalent to
existence of a closed tableau with root A.

As axioms of our calculus, we take those ABoxes whose
unsatisfiability can be seen purely by reasoning with linear
inequalities. In particular, we can take those ABoxes to con-
sist of atomic concepts and role assertions only.
Definition 3.1. An ABox assertion A is atomic if C is an
atomic concept for every a:C that occurs in A, and an ABox
is atomic if it consists of atomic ABox assertions only.
In particular, the unsatisfiability of atomic ABoxes immedi-
ately reduces to a linear programming problem.
Lemma and Definition 3.2 (Clashes). For an atomic ABox
A, the following are equivalent:

1. A is unsatisfiable

2. the linear programming problem in the variables a:A
and (a, b):R consisting ofA and inequalities stating that
all variables are in [0, 1] is infeasible.

We say that A clashes if it satisfies these conditions.

The calculus that we are about to introduce consists of propo-
sitional rules that are invertible as in the case of classical
propositional logic, together with left and right rules for the
existential restriction operator. As in labelled modal calculi,
the existential rule manipulates the labels whereas proposi-
tional rules leave labels intact.

Definition 3.3 (Linear Tableau Calculus). The linear tableau
calculus (LTC) for Łukasiewicz Fuzzy ALC consists of the
rules displayed in Figure 1.

If (R) is a rule of LTC with premiss P and conclusions
C1, . . . , Cn, then

P

P | C1 . . . P | Cn

is an instance of (R) provided each P | Ci is distinct from P .
We say that an ABoxA is inconsistent if there exists a closed
tableau for A, i.e. a tree constructed using rule instances of
LTC with rootA and all leaves labelled (Ax), andA is incom-
plete if there is a rule instance with premiss A, and complete,
otherwise.

The fact that tableaux are defined by applying rule instances
means that the rules in Figure 1 are to be read in the form ‘if
the ABox in the premiss has been reached, then add the con-
clusion to it’. As usual, a branch in the tableau is a sequence
of ABoxes such that each successive ABox is a conclusion of
a rule instance applied to the previous ABox.

In the propositional rules, one can see branching familiar
from propositional tableau. The index-shift between premiss
and conclusion of propositional rules absorbs the arithmetic
that stems from the interpretation of the propositional con-
nectives and is used here mainly for cosmetic reasons. The
existential rules are more subtle, but they achieve the same
as their counterparts in classical (crisp) ALC. For the pre-
miss of (∃L) to be satisfiable, the truth value of the existential
restriction needs to be maximized. This maximal value (up
to ε owing to the interpretation of ∃ as supremum) needs to
be realized by a successor, and the value of a : ∃R.C is ei-
ther zero (leading to the left conclusion) or achieved (again
up to ε) for some successor b as indicated in the right conclu-
sion. The side condition for (∃L) ensures termination of the
calculus and guarantees that it is only applied once to each
concept assertion a : ∃R.C. The (∃R) rule plays the role of
the universal restriction rule in classicalALC, and we need to
minimize the truth value of the existential restriction a:∃R.C
on the right for the premise of (∃R) to be satisfied. This is
achieved by equipping a with as few successors as possible,
i.e., we only consider those successors the existence of which
is stipulated by the ABox (and assign 0 as transition weight
to all other successors). Again, in the conclusion we dis-
tinguish cases depending on whether a successor contributes
positively to the truth value of the existential restriction. The
last ABox assertion in the premiss of (∃R) serves only to re-
strict attention to labels b such that (a, b) : R occurs on the
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left in some Γ′ + (a, b) : R >z ∆′; Γ′, ∆′, and z′ themselves
are then irrelevant for the rule. Note that rule instances copy
the premiss to the conclusion. In particular, (∃R) does not
discard the existential restriction as further relational succes-
sors may emerge due to concept unfolding. We illustrate the
rules before establishing soundness and completeness.
Example 3.4. Anticipating soundness, we show that ∀R.p u
q → ∀R.p is universally valid in Łukasiewicz ALC by
demonstrating that the ABox

a : ¬∃R.¬(p u q) u ∃R.¬p >0 ∅
is inconsistent. Using the propositional rules, this is readily
reduced to inconsistency of

a:∃R.¬p >0 a:∃R.¬(p u q)
and that of ∅ >0 ∅, which is immediate. Applying (∃L) we
obtain two conclusions, ∅ >0 a : ∃R.¬(p u q), which even-
tually clashes, and

(a, b):R >0 b:p+ a:∃R.¬(p u q)
where we have already applied the (¬L)-rule. Application of
(∃R) leads to the above ABox together with

(a, b):R >0 b:p | (a, b):R >1 b:p+ (a, b):R+ b:¬(p u q),
which clashes after propositional reasoning: the right hand
assertion is equivalent to b:p u q > b:p and an application
of (uL) introduces two inconsistent branches: 0 > b:p and
b:q > 1.
Remark 3.5. Among the existing algorithms for Łukasiewicz
Fuzzy ALC, the most closely related to ours are the con-
straint set algorithms by Straccia [2005] and Straccia and Bo-
billo [2007]. These algorithms handle constraints of the form
〈a : C, l〉 to be read in our syntax as a:C ≥ l, where l is
either a mixed integer linear expression in so-called control
variables or, in [Straccia and Bobillo, 2007], a more restricted
form of expression, and additionally handle inequalities be-
tween such expressions introduced by the algorithm. Upon

completion, they solve exponentially large mixed integer pro-
gramming problems. It is unclear precisely how the algorithm
of Straccia and Bobillo [2007], originally designed to decide
satisfiability over arbitrary TBoxes (but in fact incomplete for
this case [Baader and Peñaloza, 2011]) behaves in the case of
the empty TBox. Similarly, the algorithm in [Straccia, 2005]
does not provide an a priori bound on the number of integer
linear constraints that can appear (we provide such a bound
for our calculus in the shape of Lemma 5.2 below), so that
the termination argument remains somewhat unclear. (Note
however a recently published more detailed discussion [Ce-
rami and Straccia, 2013].)

By comparison, our algorithm only needs to handle pure
linear inequalities (i.e. without integer variables), which it
integrates into the actual syntax of ABoxes, so that the ob-
jects handled by the calculus always remain within the origi-
nal syntax. It only calls linear programming to detect clashes,
handling the branching on its own (see also Example 4.7). Fi-
nally, it has a clear and simple completeness proof and com-
plexity analysis, which in fact we are going to present essen-
tially in full.

4 Soundness and Completeness
Soundness (and indeed completeness) of the propositional
rules is straightforward by the following result that addition-
ally asserts strong invertibility: the premiss of a LTC-rule is
unsatisfiable if and only if this holds for all conclusions.
Lemma 4.1 (Propositional Invertibility). Let A0/A1 . . .An

be a propositional rule of LTC. Then A0 is unsatisfiable iff
all Ai are unsatisfiable, for all 1 ≤ i ≤ n.
The soundness of the existential rules is most easily seen by
considering the contrapositive statement. Our proof is ele-
mentary and could be slightly simplified by assuming wit-
nessed models [Hájek, 2005].
Lemma 4.2. If the premiss of an instance of (∃L) or (∃R) is
satisfiable, then so is (at least) one of the conclusions.

(Ax)
A | A′

(A clashes) (¬L)
A | a:¬C + Γ >z ∆

Γ >z+1 a:C + ∆
(¬R)

A | Γ >z ¬a:C + ∆

Γ + a:C >z−1 ∆

(uL)
A | a:C uD + Γ >z ∆

a:C + a:D + Γ >z−1 ∆ Γ >z ∆
(uR)

A | Γ >z a:C uD + ∆

Γ >z ∆ | Γ >z+1 a:C + a:D + ∆

(∃L)
A | Γ + a:∃R.C >z ∆

Γ >z ∆ Γ + (a, b):R+ b:C >z−1 ∆
(∗)

(∃R)
A | Γ >z ∆ + a:∃R.C | Γ′ + (a, b):R >z′ ∆′

Γ >z ∆ | Γ >z+1 ∆ + (a, b):R+ b:C

(∗) if {Γ + (a, c):R+ c:C >z−1 ∆ | c ∈ IN} ∩ A = ∅ and b does not occur in A, Γ or ∆

Figure 1: Rules of LTC
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Proof. We first consider (∃L) and fix an interpretation I for
which z+ΓI+(a:∃R.C)I ≥ ε+∆I for some ε > 0. Clearly
the left conclusion is satisfiable in case (a:∃R.C)I = 0, so
assume that (a:∃R.C)I > 0. Then there exists y ∈ ∆ such
that both RI(x, y)⊗ CI(y) > 0 where we have written x =
aI , and RI(x, y)⊗CI(y) > (∃R.C)I(x)− ε. By definition
of ⊗ this gives RI(x, y) + CI(y) − 1 > (∃R.C)I(x) − ε
so that in total (z − 1) + ΓI + RI(x, y) + CI(y) = z +
ΓI + RI(x, y) ⊗ CI(y) > z + ΓI + (∃R.C)I(x) − ε ≥
ε+ ∆I − ε = ∆I as we had to show.

For soundness of (∃R) we fix an interpretation I such
that I |= A, z + ΓI > ∆I + (a:∃R.C)I and z′ + Γ′

I
+

RI(aI , bI) > ∆′
I . It suffices to show that z+1+ΓI > ∆I+

RI(aI , bI) + CI(bI). This follows from (∃R.C)I(aI) ≥
RI(aI , bI)⊗ CI(bI) ≥ RI(aI , bI) + CI(bI)− 1.

Soundness of LTC with respect to many-valued interpreta-
tions is now an easy corollary of the contrapositive of the
previous lemma.

Proposition 4.3 (Soundness of LTC). Every inconsistent
ABox is unsatisfiable.

We establish completeness of LTC by showing that the exis-
tential rules are in fact invertible and that the calculus does
not generate infinite branches in backwards proof search, es-
sentially the same argument that is also used to show com-
pleteness and termination in classical ALC. Completeness
follows from invertibility once we demonstrate that every un-
satisfiable sequent either clashes or is a rule premiss and the
fact that all branches in tableaux are finite. As to the former,
it is straightforward to show that

Lemma 4.4. IfA is clash-free and complete, thenA is satis-
fiable.

Termination of the calculus is a consequence of the fact that
only finitely many fresh labels will be generated using the
(∃L)-rule as every newly introduced individual can only ap-
pear in concept assertions of smaller quantifier rank, and each
label is annotated with sub-concepts of concepts that occur in
the initial ABox, an argument similar to that used for termi-
nation of hybrid tableaux in [Bolander and Blackburn, 2007].

Lemma 4.5. Every path in LTC is of finite length only.

Proof. As all individuals are only labelled with sub-concepts
of concepts that occur in A0 and the size of ABox-assertions
is non-increasing, every infinite branch (A0,A1, . . . ) must
contain an infinite number of applications of (∃L). Let A =⋃

i≥0Ai. Consider the forest of individual-labelled trees in-
duced by the role assertions (a, b) : R generated by (∃L).
The restriction on applicability of (∃L) guarantees that all
these trees are finitely branching, so that by König’s lemma,
there must be at least one tree with an infinite branch. In
other words, there is an infinite sequence of (fresh) individu-
als (a0, a1, . . . ) such that (ai, ai+1):R ∈ A is induced by an
application of (∃L). On the other hand, for every role asser-
tion (a, b) introduced by (∃L) and every b:D ∈ A we have
that

rk(D) < max{rk(C) | a:C ∈ A}

(recall that rk(·) denotes quantifier rank). That is, the
maximal quantifier rank decreases along the infinite chain
(a0, a1, . . . ) constructed above, contradiction.

Completeness is now an immediate consequence of the pre-
vious observations.

Theorem 4.6 (Completeness of LTC). Every unsatisfiable
ABox is inconsistent, and every satisfiable ABox is satisfiable
in an interpretation with finite domain.

Proof. Suppose thatA is an unsatisfiable ABox that is not in-
consistent. In particular, it does not contain a clash, so we can
apply a rule by Lemma 4.4. By invertibility, at least one of
the premisses is again an unsatisfiable, but not inconsistent,
ABox. Iterating this, we obtain an infinite branch, contradict-
ing Lemma 4.5. The small model property also follows from
Lemma 4.5 which in particular guarantees that every satisfi-
able ABox is expanded to a finite ABox to which no more
rules apply.

One advantage of our calculus over previous algorithms,
which always exhibit worst-case behaviour, is that it allows
for heuristic optimization. A very simplistic example is the
following.

Example 4.7. Consider the example from the introduction,
A t ∃R.C, where A is atomic and C is a concept that gener-
ates exponentially many individuals (such concepts exist also
in the fuzzy case, as already observed by Straccia [2005]).
Satisfiability of this concept translates into satisfiability of the
ABox a : At∃R.C >0 0, which unfolds, upon decoding the
disjunction and subsequent propositional reasoning, to satis-
fiability of a : A + a : ∃R.C >0 0. Our calculus can then
finish successfully on the spot by choosing the left branch
in (∃L). By comparison, the algorithms of [Straccia, 2005;
Straccia and Bobillo, 2007; Schröder and Pattinson, 2011]
will always expand the existential restriction and hence gen-
erate exponentially many labels.

5 Complexity and the Small Model Property
It follows from Theorem 4.6 in conjunction with Lemma 4.5
that ABox-satisfiability is decidable in Łukasiewicz ALC.
We obtain an upper complexity bound by carefully dissecting
the length of branches and the size of ABoxes. The crucial
observation is that all rules of LTC do not increase the size of
ABox-assertions except possibly for an increase of the size
of the index. The measure that we use in the analysis of the
length of branches, the order of an ABox assertion, compen-
sates for this by weighing the size of concepts with a factor
of two. Formally:

Definition 5.1 (Size and Order). The size of a concept C,
size(C), is the number of its sub-concepts, and ord(C) =
2 · size(C) is its order. Size and order of an ABox-assertions
A = Γ >z ∆ are the sum of size (resp. order) of all concepts
that occur in A, additionally counting 1 for every role asser-
tion (a, b):R in A plus dlog2 |z| + 1e for the index. Size and
order of an ABox are the sum of the size (resp. order) of all
ABox assertions contained in A.
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Note that size(A) ≤ ord(A) ≤ 2 · size(A). We start with the
following easy observation concerning order:

Lemma 5.2. If (R) is a rule instance of LTC with premiss P
and conclusions C1, . . . , Cn then max{ord(A) | A ∈ Ci} ≤
max{ord(A) | A ∈ P} for all 1 ≤ i ≤ n.

In other words, the order (but not the size) of ABox asser-
tions is non-decreasing along every branch. As far as we can
see, it is essentially this fact that is crucially missing from
the argumentation in [Straccia, 2005; Straccia and Bobillo,
2007], where the accompanying integer linear constraints
lead a somewhat hidden life.

Our second observation is that the number of fresh individ-
uals introduced by (∃L) is at most exponential in the size of
the initial ABox.

Lemma 5.3. LetA0,A1, . . . ,Ak be a path in LTC. Then the
number of individuals in any Ai is exponentially bounded by
size(A0).

Proof. As every new individual can only be labelled with
sub-concepts of concepts occurring in A0, the side condition
on (∃L) ensures that every individual only produces a number
of descendants that is linear in size(A0), i.e. the cardinality of
the set {b | (a, b):R ∈ Ak} is linearly bounded by size(A0).
As every individual that is created using (∃L) is only anno-
tated with formulae of smaller quantifier rank, this results in
a set of trees, as in the proof of Lemma 4.5, with linear height
and linear branching, giving an exponential number of indi-
viduals in the worst case.

The complexity estimate is now a consequence of the obser-
vation that one can only produce exponentially many different
ABoxes using exponentially many labels.

Lemma 5.4. The length of every path (A0,A1, . . . ,Ak) in
LTC is at most exponential in ord(A0).

Proof. Note that A0 ⊆ A1 ⊆ An by the definition of rule
instance, and that all inclusions are strict (Definition 3.3). As
the order of all ABox assertions in the path is bounded by
max{ord(A) | A ∈ A0}, i.e. linear in the size of A0, the
claim follows from the fact that there can be at most expo-
nentially many ABox-assertions of this (maximal) size in the
path: we form a linear-sized expression from an alphabet,
consisting of logical symbols, concept and role names, and
labels, that has at most exponential size by Lemma 5.3.

The announced complexity bound for ABox-consistency is
now a consequence of the length of the branches.

Theorem 5.5. ABox-consistency in LTC is in NEXPTIME.

Proof. By the above, consistency of an ABox A can be
solved non-deterministically by applying a rule instance and
then guessing a conclusion. After at most exponentially many
steps, this leads to a linear programming problem of at most
exponential size (exponentially many ABoxes, each of which
satisfies ord(A′) ≤ ord(A) ≤ 2size(A)); we are done since
linear programming is in P [Sontag, 1985].

The complexity of Łukasiewicz Fuzzy ALC now follows
from completeness (Theorem 4.6).

Corollary 5.6. ABox-satisfiability in ŁukasiewiczALC is de-
cidable in NEXPTIME. In particular, universal validity in
Łukasiewicz ALC is decidable in CONEXPTIME.
As an aside, Lemma 5.3 also allows us to improve the finite
model property stated in Theorem 4.6 to a small model prop-
erty.
Corollary 5.7. Every satisfiable ABoxA is satisfied by an in-
terpretation with domain bounded exponentially by size(A).
Remark 5.8. While it would be desirable to support also
TBox axioms such as the axiom

young u ∃R. risk v ∃R. sportsCar,
which states that young people that like to take risks also
tend to like sports cars (where we regard all concepts as
vague, including the concept sportsCar, which would apply
to a Ferrari to a higher degree than to a Vauxhall Tigra), it
has been shown that unrestricted TBoxes lead to undecidabil-
ity in Łukasiewicz Fuzzy ALC [Baader and Peñaloza, 2011;
Cerami and Straccia, 2013] (while in the finite-valued case,
decidability extends even to very expressive logics such
Łukasiewucz fuzzy SROIQ [Bobillo and Straccia, 2011]).
On the other hand, we expect no essential difficulties in ac-
commodating so-called acyclic TBoxes by the standard tech-
nique of on-the-fly expansion [Lutz, 1999]. Here, a TBox is
called acyclic if its axioms all have the form A = C where
A is atomic and C is called the definition of A such that ev-
ery atomic concept has at most one definition and the relation
‘appears in the definition of’ on atomic concepts is acyclic.

6 Conclusions
We have introduced a labelled tableau calculus for
Łukasiewicz Fuzzy ALC, which we have shown to be sound
(Proposition 4.3) and complete (Theorem 4.6). The calcu-
lus realizes the best known upper complexity bound NEXP-
TIME (Theorem 5.5). The calculus generalizes previous cal-
culi by allowing linear inequalities in ABoxes which, for the
first time, permit the comparison of truth degrees across indi-
viduals. As a by-product we obtain a new proof of a previ-
ously known result, the small model property of Łukasiewicz
Fuzzy ALC (Corollary 5.7). It is known that reasoning with
general TBoxes destroys both the finite model property [Bo-
billo et al., 2011] and decidability [Cerami and Straccia,
2013; Baader and Peñaloza, 2011]. As a consequence, ABox
reasoning, as treated here, together with acyclic TBoxes that
are expanded on the fly, is the best we can hope for. Com-
pared to previous decision procedures, our approach has the
following main advantages:
• it is strictly more expressive (due to the use of linear in-

equalities) while retaining the same complexity as other algo-
rithms as demonstrated in Example 2.3
• the complexity bound of our calculus is a true worst case

bound that can be often be avoided in practical examples,
whereas all other calculi known to date produce integer pro-
gramming problems that are as large as the full tableau tree,
i.e. typically exponential, see Remark 3.5.
The most pressing remaining open question is the actual opti-
mality of the complexity bound, i.e. to show that concept sat-
isfiability in Łukasiewicz Fuzzy ALC is NEXPTIME-hard.
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