Motivation	ALCHIQ 0000	$\mathcal{ALCQ}me_2$	Reasoning 00	Reduction 000000	References

Description Logics with I and me Oberseminar – FAU Erlangen – WS2012/13

Thorsten Wißmann

November 13th, 2012

Last update: November 13, 2012

Motivation	ALCHIQ	$\mathcal{ALCQ}me_2$	Reasoning	Reduction	References

Consider a world with:

 $\begin{array}{l} \mathsf{Man} \equiv \mathsf{Person} \sqcap \mathsf{Male} \\ \mathsf{Woman} \equiv \mathsf{Person} \sqcap \mathsf{Female} \\ \bot \equiv \mathsf{Male} \sqcap \mathsf{Female} \\ \mathsf{Father} \sqsubseteq \mathsf{Man} \sqcap \exists \mathsf{parentOf}.\mathsf{Person} \\ \mathsf{Father} \sqsubseteq \forall \mathsf{parentOf}.\mathsf{Person} \end{array}$

So given parentOf(Anakin, Luke) and Father(Anakin) for this world implies:

Motivation	ALCHIQ	$\mathcal{ALCQ}me_2$	Reasoning	Reduction	References

Consider a world with:

 $Man \equiv Person \sqcap Male$ $Woman \equiv Person \sqcap Female$ $\bot \equiv Male \sqcap Female$ $Father \sqsubseteq Man \sqcap \exists parentOf.Person$ $Father \sqsubseteq \forall parentOf.Person$

So given parentOf(Anakin, Luke) and Father(Anakin) for this world implies:

- Person(Luke)
- Woman \sqcap Father $\equiv \bot$

Motivation	ALCHIQ	$\mathcal{ALCQ}me_2$	Reasoning	Reduction	References

Motivation	ALCHIQ	$ALCQme_2$	Reasoning	Reduction	References
	0000				

Definition of Description Logic

Family of knowledge representation languages, where each models:

- Concepts Properties of an individual
- Roles Relations between two individuals
- Assertions for roles and concepts: ABox
- Relations between concepts: TBox
- Relations between roles: RBox

Every Description Logic (e.g. ALC, ALCHIQ, ALCHIQme₂, ...) defines rules how these properties can be described.

[A DL Primer]

Motivation	ALCHIQ	$\mathcal{ALCQ}me_2$	Reasoning	Reduction	References
	0000				

The Description Logic \mathcal{ALC} allows:

ABox

Assertions: Mother(Padme), parentOf(Padme, Leia)

TBox

Relation between concepts: Mother \sqsubseteq Parent

RBox None

[A DL Primer]

Motivation	ALCHIQ ○○●○	\mathcal{ALCQme}_{2} 00	Reasoning 00	Reduction 000000	References

The Description Logic \mathcal{ALCHIQ} additionally allows:

- Role \mathcal{H} ierarchies: parentOf \sqsubseteq ancestorOf
- \mathcal{I} nverse Roles: childOf := parentOf⁻
- Qualified number restrictions: Parent := \geq_1 parentOf.Human

Human \sqsubseteq (\ge_2 parentOf⁻.Human)

[A DL Primer]

Motivation	ALCHIQ	$\mathcal{ALCQ}me_2$	Reasoning	Reduction	References
	0000				

Model

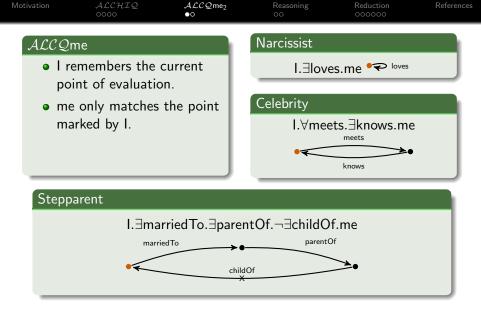
A *non-empty* set Δ^{I} of individuals, where each

- concept C is represented by a subset: $C^{I} \subseteq \Delta^{I}$
- role R is represented by a relation: $R^{I} \subseteq \Delta^{I} \times \Delta^{I}$
- axiom holds.

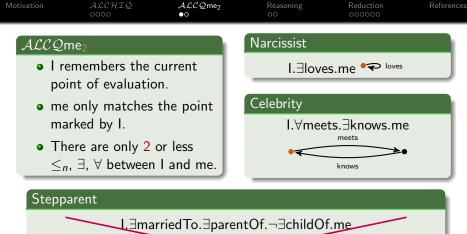
Motivation	ALCHIQ	$ALCQme_2$	Reasoning	Reduction	References
		•0			

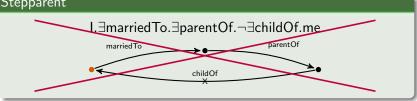
\mathcal{ALCQ} me

- I remembers the current point of evaluation.
- me only matches the point marked by I.



[Marx]



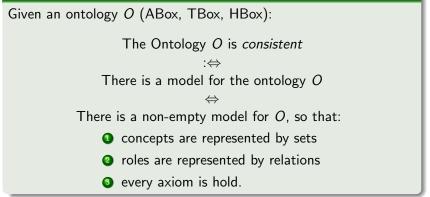


Motivation	ALCHIQ 0000	\mathcal{ALCQme}_2	Reasoning 00	Reduction 000000	References
Inconsis	tent Examp	le			

A barber is someone who shaves all people that do not shave themself. Now consider an island on which exactly one barber lives.

Motivation	\mathcal{ALCHIQ}	$\mathcal{ALCQ}me_2$	Reasoning	Reduction	References
			0		

Definition



Motivation	ALCHIQ	$\mathcal{ALCQ}me_2$	Reasoning	Reduction	References
			00		

Obvious application

I just created or modified an ontology. Does it make sense?

 $\Leftrightarrow \text{ Is the ontology consistent?}$

Motivation	\mathcal{ALCHIQ}	$\mathcal{ALCQ}me_2$	Reasoning	Reduction	References
			00		

Obvious application

I just created or modified an ontology. Does it make sense?

 \Leftrightarrow Is the ontology consistent?

TBox-Axiom inference

Is a TBox axiom X the inference of an existing consistent TBox T?

 \Leftrightarrow Is the TBox $T' = T \cup \{\neg X\}$ still consistent?

Motivation	\mathcal{ALCHIQ}	$\mathcal{ALCQ}me_2$	Reasoning	Reduction	References
			00		

Obvious application

I just created or modified an ontology. Does it make sense?

 \Leftrightarrow Is the ontology consistent?

TBox-Axiom inference

Is a TBox axiom X the inference of an existing consistent TBox T?

 $\Leftrightarrow \text{ Is the TBox } T' = T \cup \{\neg X\} \text{ still consistent}?$

Classification

What is the tree of concepts in a TBox T?

 \Leftrightarrow For which pair of concepts C_1, C_2 is $C_1 \sqsubseteq C_2$ a inference of the TBox T?

Motivation	ALCHIQ	$\mathcal{ALCQ}me_2$	Reasoning	Reduction	References
				00000	

Consistency checking for \mathcal{ALCHIQ} ontologies

- Problem is decidable (EXPTIME-complete),.
- Consistency checking for a single concept is PSPACE-complete
- Reasoning software already exists (Hermit, Pellet, ...).

Consistency Checking for $\mathcal{ALCQ}me_2$ ontologies

- Problem is decidable.
- No reasoning software exists yet.

Motivation	ALCHIQ	$ALCQme_2$	Reasoning	Reduction	References
				00000	

Consistency checking for \mathcal{ALCHIQ} ontologies

- Problem is decidable (EXPTIME-complete),.
- Consistency checking for a single concept is PSPACE-complete
- Reasoning software already exists (Hermit, Pellet, ...).

Consistency Checking for $\mathcal{ALCQ}me_2$ ontologies

- Problem is decidable.
- No reasoning software exists yet.

 $\Rightarrow \mbox{Reduce the TBox satisfiability problem over $\mathcal{ALCQ}me_2$ to the} one over \mathcal{ALCHIQ} polynomially.}$

 $\Rightarrow \mathcal{ALCQ}me_2$ has the same complexity.

[Gorín and Schröder]

Motivation	ALCHIQ	$ALCQme_2$	Reasoning	Reduction	References
				00000	

Quasi-tree model property

If C is a satisfiable concept of a $ALCQme_2$ -TBox T, then there exists a quasi-tree model that satisfies C at its root.

Motivation	ALCHIQ	$\mathcal{ALCQ}me_2$	Reasoning	Reduction	References
				00000	

Quasi-tree model property

If C is a satisfiable concept of a $ALCQme_2$ -TBox T, then there exists a quasi-tree model that satisfies C at its root.

Idea: Encode it as a tree

- Force the model to be a tree
- Encode self loops of R as new concepts \bigcirc_R
- Encode uplinks of R as new concepts \uparrow_R
- Encode the behaviour of \geq,\sqcup,\sqcap,\neg as axioms in \mathcal{ALCHIQ}

[Gorín and Schröder]

Motivation	ALCHIQ 0000	\mathcal{ALCQme}_{2} 00	Reasoning 00	Reduction 00●000	References
Concept encoding					

Semantics

$$I, x, y \vDash B$$
 iff $y \in B^{I}$ if B is atomic
 $I, x, y \vDash \neg C$ iff $I, x, y \nvDash C$

Encode each original concept (or subformula) C as:

 $A_{*,C}$ The closed concept *C* holds here.

Enforce the $A_{*,C}$ concept to behave like the concept C:

$$\begin{array}{c} \top \sqsubseteq \neg (A_{*,C} \sqcap A_{*,\neg C}), \\ \top \sqsubseteq A_{*,\top}, \\ A_{*,C \sqcap D} \sqsubseteq A_{*,C} \sqcap A_{*,D} \end{array}$$

Motivation	ALCHIQ 0000	\mathcal{ALCQme}_{2} 00	Reasoning 00	Reduction 000●00	References
Concept	Concept encoding				

Semantics

$$I, x \vDash A_{f*,C} \text{ iff } I, \text{father of } x, x \vDash C$$
$$I, x \vDash A_{**,C} \text{ iff } I, x, x \vDash C$$
$$I, x \vDash A_{*f,C} \text{ iff } I, x, \text{father of } x \vDash C$$

 $A_{**,C}$ *I* describes this node and the concept *C* holds here. $A_{f*,C}$ *I* describes the father node and the concept *C* holds here. $A_{*f,C}$ *I* describes the this node and the concept *C* holds at the father node.

Motivation	ALCHIQ 0000	\mathcal{ALCQme}_2 00	Reasoning 00	Reduction 0000●0	References
Concept	t encoding				

Semantics

$$I, x, y \vDash \text{me iff } x = y$$

$$I, x, y \vDash \exists R.C \text{ iff there is a } z : (y, z) \in R^{I} \text{ and } I, x, z \vDash C$$

$$I, x, y \vDash I.C \text{ iff } I, y, y \vDash C$$

Is encoded as:

$$A_{*,I.\geq_n R.C} \sqsubseteq$$

 $\prod \begin{pmatrix} (\uparrow_R \sqcap A_{*f,C(\bot)}) \sqcap (\bigcirc_R \sqcap A_{**,C(\top)}) \to \ge_{n-2} R.A_{f*,C(\bot)} \\ (\uparrow_R \sqcap A_{*f,C(\bot)}) \sqcap \neg (\bigcirc_R \sqcap A_{**,C(\top)}) \to \ge_{n-1} R.A_{f*,C(\bot)} \\ \neg (\uparrow_R \sqcap A_{*f,C(\bot)}) \sqcap (\bigcirc_R \sqcap A_{**,C(\top)}) \to \ge_{n-1} R.A_{f*,C(\bot)} \\ \neg (\uparrow_R \sqcap A_{*f,C(\bot)}) \sqcap \neg (\bigcirc_R \sqcap A_{**,C(\top)}) \to \ge_{n-0} R.A_{f*,C(\bot)} \end{pmatrix}$

And many more ...

- Use OWL files for ontologies
- Encode the I and me as a Role I and me as concept
- Encode all the OWL axioms (Role hierarchies, Role inverses, ObjectOneOf, ...)
- Check how big the polynomial blow-up
 - of the file-size
 - of consistency checking
 - of classification

actually is for large ontologies.

Motivation	ALCHIQ 0000	ALCQme₂ ○○	Reasoning 00	Reduction 000000	References

- Krötzsch M.; Simancik F.; Horrocks I.: "A Description Logic Primer", arXiv:1201.4089v1 [cs.Al]
- Gorín D.; Schröder L.: "Celebrities don't follow their followers: Binding and Qualified Number Restrictions"
- Maarten Marx: "Narcissists, Stepmothers and Spies ", 2002