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Two starters Deranging things. Do you have a rapid answer?

Don’t get deranged!

The derangement problem:
A derangement is permutation π of an n-element set Sn which is
1-cyclefree, i.e., if it has no fixed points:
there is no s ∈ Sn s.th. π(s) = s
For n = 4, Sn = 1, 2, 3, 4 the following permutations (out of 24) are
derangements:

2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321

Q: What is the probability that a randomly chosen permutation of Sn is
a derangement? How does it behave as n grows?
A: For large "S this probability approaches 1/e = 0.367879...
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Two starters Deranging things. Do you have a rapid answer?

This one is a little trickier..

Another derangement problem
A permutation π of an n-element set S is a 1-2-cyclefree
if it has no fixed points and no cycles of length 2
(i.e. for all s ∈ S : π(s) "= s and π2(s) "= s)
For n = 4, Sn = {1, 2, 3, 4} the following permutations (out of 24) are
1-2-cyclefree:

2341, 2413, 3142, 3421, 4123, 4312

Q: What is the probability that a randomly chosen permutation of S is
1-2-cyclefree? How does it behave as n grows?
A: For large "S this probability approaches e−3/2 = 0.22313...

Volker Strehl () Let me count the ways ... or complex analysis meets complexity analysisJanuary 29, 2013 5 / 88

Two starters Sampling: a challenge for experimentalists

What is the shape of a typical tree?

What does a typical (=random) large binary tree look like?
Like this?

Probably not ....
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Two starters Sampling: a challenge for experimentalists

What is the shape of a typical tree?

What does a typical (=random) large binary tree look like?

Like this?

Or like this?
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Two starters Sampling: a challenge for experimentalists

What is the shape of a typical tree?

So what is typically the height, width, shape, ... of a binary tree?

If you don’t have an answer, you might try experimentally by sampling

But how do you sample from binary trees?
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Two classical problems Counting rabbits

Counting rabbits à la Fibonacci

Consider the sequence of Fibonacci numbers (fn)≥0 defined by

fn+1 = fn + fn−1 (n ≥ 1) f0 = 0, f1 = 1

First values:

n 0 1 2 3 4 5 6 7 8 9 10
fn 0 1 1 2 3 5 8 13 21 34 55

f100 = 354224848179261915075

Q: How fast does this sequence grow?

A: Easy because the recurrence is linear with constant coefficients:

fn =
φn − φ̂n

√
5

where
φ = 1+

√
5

2 ≈ 1.61803

φ̂ = 1−
√
5

2 ≈ −0.618034
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Two classical problems Counting rabbits

The analytic picture

Consider the power series (a.k.a. “generating function”)

f (z) =
∑

n≥0

fn zn = z + z2 + 2z3 + 3z4 + 5z5 + · · ·

The recurrence is equivalent to the rational function

f (z) =
z

1− z − z2

=
z

(1− φ z)(1− φ̂ z)

=
1√
5

(
1

1− φz
− 1

1− φ̂z

)
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Two classical problems Counting rabbits

The analytic picture contd.

Look at the plot of |f (z)| for complex z
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There are two “singularities” where the denominator vanishes:
z = φ−1 = 0.618034 and z = φ̂−1 = −1.61803.
φ−1 is the “dominant singularity” which determines the growth rate
of (fn)n≥0.

ρ = φ−1 is the radius of convergence of the series f (z)
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Two classical problems Non-rationality without pumping

Dyck-language the “typical” context-free language

D = the language of properly nested parentheses pairs () alias 01

(unambiguous) context-free grammar

D : D → ε | D 0D 1

Dn = {w ∈ D ; |w | = 2n}, dn = "Dn

First sets

D0 = {ε} D1 = {01} D2 = {0101, 0011}
D3 = {010101, 010011, 00110, 001011, 000111}

The derivation trees of D are precisely the binary trees

words in Dn encode binary trees with n interior nodes and n+1 leaves
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Two classical problems Non-rationality without pumping

(Euler-Segner-) Catalan numbers (ctd.)

cardinalities: dn = "Dn

n 0 1 2 3 4 5 6 7 8 9 10
dn 1 1 2 5 14 42 132 429 1430 4862 16796

for big n numbers dn can be computed easily e.g.

d100 =

896519947090131496687170070074100632420837521538745909320
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Two classical problems Non-rationality without pumping

(Euler-Segner-) Catalan numbers (ctd.)

The numbers dn
1 satisfy a nonlinear recurrence

dn+1 = d0 dn + d1 dn + · · ·+ dn d1 (1)

2 satisfy a first-order linear recurrence with polynomial coefficients

(n + 2) dn+1 = 2(2n + 1) dn (2)

3 have a “closed form”

dn =
1

n + 1

(
2n

n

)
(3)

(1) follows from the grammar (2) and (3) are obviously equivalent
validity of (2) can be seen from looking at binary trees (3) has a neat
combinatorial proof using cyclic shifts of balanced words
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Two classical problems Non-rationality without pumping

Asymptotics of the Catalan numbers

From the “closed form” (2) the asymptotic behaviour of the sequence
(dn)n≥0 can be obtained easily:

Use Stirling’s formula

n! ∼
√
2πn

(n
e

)n
as n → ∞

to estimate the binomial coefficient
to obtain

dn ∼ 4n√
2π n3/2

as n → ∞
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Two classical problems Non-rationality without pumping

Asymptotics of the Catalan numbers
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Figure: Relative approximation of Catalan numbers for n=0..100 and for
n=1000..5000
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Two classical problems Non-rationality without pumping

The (Chomsky-) Schützenberger-Theorems

L ⊂ Σ∗ a formal language

&n = "(L ∩ Σn) number of words of length n in L

fL(z) =
∑

n≥0 &n z
n the “generating function” of L

(Chomsky-) Schützenberger-Theorems
1 If L is regular (i.e. type-3) then fL(z) is a rational function i.e. there

are polynomials p(z), q(z) s.th.

fL(z) =
p(z)

q(z)

⇒ (&n)n≥0 satisfies a linear recurrence with constant coefficients
2 If L is unambiguously context-free (type-2 unambig) then fL(z) is an

algebraic function i.e. there is a polynomial P(z , y) such that

P(z , fL(z)) = 0

⇒ (&n)n≥0 satisfies a linear recurrence with polynomial coefficients
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Two classical problems Non-rationality without pumping

Our first example: L = F (Fibonacci)

A regular language for Fibonacci: F = 0.(0 + 11)∗ ⊆ {01}∗
Fn = F ∩ {01}n with

Fn+1 = Fn.0 + Fn−1.11 F0 = ∅,F1 = {0}
First sets:

F0 = ∅
F1 = {0} F2 = {00} F3 = {000, 011}
F4 = {0000, 0011, 0110}
F5 = {00000, 00011, 00110, 01100, 01111}

The sequence (fn)n≥0 = ("Fn)n≥0 satisfies a second-order linear
recurrence with constant coefficients and the generating function

∑

n≥0

fn zn =
z

1− z − z2

is rational
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Two classical problems Non-rationality without pumping

Our second example: L = D (Dyck)

From the basic recurrence

fD(z) = 1 + z fD(z)
2

and thus

fD(z) =
1−

√
1− 4z

2z

Expanding the radical (Newton’s binomial theorem) gives Catalan
numbers again:

fD(z) =
∑

n≥0

dn zn =
∑

n≥0

1

n + 1

(
2n

n

)
zn
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Two classical problems Non-rationality without pumping

The function fD(z)
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Figure: Graph of fD(z) for 0 ≤ z ≤ 1/4 (left)
and of |fD(z)| for 0 ≤ 0(z) ≤ 0.5 and −1 ≤ 1(z) ≤ 1 (right)

z = 1/4 is an “algebraic singularity” of fD(z) indeed the only
singularity of fD(z) and also the radius of convergence of the series
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Two classical problems Non-rationality without pumping

D is not rational!

Generating function argument:

' fD(z) =
1−

√
1− 4z

2z
is not a rational function!

Asymptotic argument:
' Any sequence (an)n≥0 that satisfies a linear recurrence with constant

coefficients behaves asymptotically like

an ∼ p(n)λn as n → ∞

where p( . ) is a polynomial
' We have seen

dn ∼ 4n√
2π n3/2

as n → ∞
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Counting and average-case complexity The scenario for average-case complexity

Why counting?

In fields like
Probability (random generation)
Physics (statistical mechanics)
Chemistry (organic structures)
Algorithm analysis (average-case complexity)

important problems can be reduced to counting

Information about the quantitative behaviour of systems can be
deduced from the asymptotic behaviour of “number sequences”

Asymptotics
is usually easy if (exact) “closed” formulas are available — which is
rarely the case
is (often) feasible if “nice” recurrences are available
is (often) feasible if the “generating functions” can be treated with
methods of complex analysis (saddle point methods singularity analysis
Mellin transforms...)
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Counting and average-case complexity The scenario for average-case complexity

The scenario for average-case complexity

D : a family of objects (data)

size : D → N : a size-function of objects
Dn : objects of size n dn = "Dn

A : an algorithm that operates on objects from D
costA : D → R≥0 : a cost-function for executing A on D
cn =

∑
t∈Dn

costA(t) : cumulated cost for A on Dn

average-case complexity of A on Dn:

cn
dn

=
1

dn

∑

t∈Dn

costA(t)

Goal: determine the asymptotic behaviour (growth rate) of the

sequence

(
cn
dn

)

n≥0

as n → ∞
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Counting and average-case complexity The scenario for average-case complexity

The problem of average-case complexity

Associate with D and size the generating function

d(z) =
∑

n≥0

dn z
n =

∑

t∈D
zsize(t)

and with cost the generating function

c(z) =
∑

n≥0

cn z
n =

∑

t∈D
costA(t) z

size(t)

Or (if cost takes nonnegative integer values) take right away the
bivariate generating function

w(u, z) =
∑

t∈D
ucostA(t) zsize(t)

and note that d(z) = w(1, z), c(z) = ∂uw(u, z)
∣∣
u←1

The problem is: functions d(z), c(z),w(u, z) are almost never known
explicitly! They are accessible only through functional equations they
satisfy. How can one get asymptotics from that?
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Counting and average-case complexity Complex analysis comes in...

Analysis comes in ...

Growth rates can be studied using generating functions. Why?

Remember from your calculus class the Hadamard-criterion:
If the power series

a(z) = a0 + a1z + a2z
2 + · · ·

has radius of convergence ρ then

ρ−1 = lim sup
n→∞

n
√
|an|

So one may expect as exponential growth rate:

(|an|)n≥0 grows like ρ−n as n → ∞

often written as: an 2 ρ−n

This is sufficient information in some cases but usually one has to take
care of “subexponential factors” in order to get meaningful results
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Counting and average-case complexity Complex analysis comes in...

The guiding rules

Given a sequence (an)n≥0 one would like to estimate its growth rate as

an = An · α(n)

where α(n) grows sub-exponentially (or is even bounded)

Basic insight:
The exponential growth rate of a sequence (an)n≥0 depends on the
location of the dominant singularity — which for us is the radius of
convergence ρ of a(z) =

∑
n≥0 an z

n so that A = ρ−1

The associate subexponential factor α(n) depends on the nature of ρ
as a singularity: rational algebraic logarithmic...
One has to look for the behaviour of a(z) as z approaches ρ
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Counting and average-case complexity Complex analysis comes in...

More analysis ... things get really complex

Cauchy’s integral formula
If f (z) is an analytic function in some domain D ⊆ C with 0 ∈ D and
if f (z) = a0 + a1z + a2z2 · · · is its power series expansion at z = 0
then

an = [zn] f (z) =
1

2πi

∮

γ

f (z)

zn+1
dz

where γ is any (!) simple closed path around z = 0 in D

Asymptotics of the Newton series coefficients for α /∈ −N:

[zn] (1− z)−α =

(
n + α− 1

n

)
=

Γ(n + α)

Γ(α)Γ(n + 1)

∼ nα−1

Γ(α)

[
1 +

α(α− 1)

2n
+

α(α− 1)(α− 2)(3α− 1)

24n2
+ · · ·

]
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Counting and average-case complexity Complex analysis comes in...

The transfer principle (Flajolet-Odlyzko)

The main idea is

a(z) ∼z→ρ σ(z) ⇒ [zn] a(z) ∼ [zn] σ(z)

where σ(z) is a function usually much simpler than a(z)

This holds under certain (mild, for our applications) conditions with
approximating functions (for ρ = 1) like

σ(z) =

(
1− z

ρ

)α

logβ
(
1− z

ρ

)
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Counting and average-case complexity Complex analysis comes in...

Simple cases of transfer

Let f (z) =
∑

n≥0 fn z
n be a power series with radius of convergence

ρ = 1 and f (1) "= 0. Then

[zn]
f (z)

1− z
∼ f (1)

[zn] f (z)
√
1− z ∼ − f (1)

2
√
πn3

[zn] f (z) log
1

1− z
∼ f (1)

n
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A bunch of examples Counting unary-binary trees

Motzkin trees

Consider the following variant of binary trees: unary-binary trees
(a.k.a. Motzkin trees)

M : trees where each internal node has either one or two (ordered)
successors
Written as a context-free grammar

M : M → ε | - |M 0M 1

Mn = M ∩ {0, 1, -}, mn = "Mn

First sets

M0 = {ε}
M1 = {-}
M2 = {--, 01}
M3 = {---, -01, 0-1, 01-}
M4 = {----, --01, -0-1, -01-, 0--1, 0-1-, 01--, 0101, 0011}
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A bunch of examples Counting unary-binary trees

Motzkin trees

First values

n 0 1 2 3 4 5 6 7 8 9 10
mn 1 1 2 4 9 21 51 127 323 835 2188

Values can be computed quite easily

m100 = 737415571391164350797051905752637361193303669

One has

mn =
∑

j≥0

1

j + 1

(
2j

j

)(
n

2j

)

but there is no neat “closed form” of mn

The numbers satisfy a recurrence

(n + 1)mn+1 = (2n + 3)mn + 3nmn−1, m0 = m1 = 1

but it seems difficult to obtain asymptotic growth information
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A bunch of examples Counting unary-binary trees

Motzkin trees: look at the generating function

The generating function

m(z) =
∑

n≥0

mn z
n = 1 + z + 2z2 + 4z3 + 9 z4 + · · ·

satisfies (from the grammar)

m(z) = 1 + z · (m(z) +m(z)2)

and hence

m(z) =
1− z −

√
1− 2z − 3z2

2z2

because 1− 2z − 3z2 = (1 + z)(1− 3z) the critical values
(“singularities”) of m(z) are z = −1 and z = 1/3

ρ = 1/3 is the “dominant singularity” (=radius of convergence) —
expect mn 2 3n
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A bunch of examples Counting unary-binary trees

Motzkin trees: singularities visualized

Look at m(z) in the vicinity of ρ = 1/3
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Figure: Plot of |m(z)| for −2 ≤ 0(z) ≤ 1 and −1 ≤ 1(z) ≤ 1
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A bunch of examples Counting unary-binary trees

Motzkin trees: look at the generating function (contd.)

Expand m(z) around ρ = 1/3:

m(z) ≈ 3(1−
√
3
√
1− 3z)

This gives

mn =
3

2

√
3

πn3
· 3n ·

(
1 +O(

1

n
)

)

Looking closer one can get

mn =

(
3

2

√
3

πn3
− 117

32

√
3

πn5

)
· 3n ·

(
1 +O(

1

n2
)

)

and more ...
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A bunch of examples Counting unary-binary trees

Motzkin trees: look at the generating function (contd.)
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Figure: Two (relative) approximations of the (mn)1≤n≤50
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A bunch of examples Ordered Trees

Ordered trees

Ordered trees (a.k.a. planted plane trees):
are rooted trees
with an arbitrary (finite) number of successors of each node
successors (subtrees) of a node are linearly ordered

Example:
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A bunch of examples Ordered Trees

Ordered trees and their levels

Figure: A random ordered tree with 50 nodes and its level distribution
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A bunch of examples Ordered Trees

Ordered trees and their levels

size of an ordered tree = number of nodes

Interesting parameters of ordered trees (of size n)
height
– can be anything between 1 and n − 1
pathlength (∼ average level · size)
– can be anything between between n − 1 and

(n
2

)

level distribution
– can be very different for different instances

So, what is typical ?
(i.e., averaging over all ordered trees of size n)

Try to guess the answer from experiments!
This need true random generation based on exact counting
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A bunch of examples Ordered Trees

Figure: Height statistics for 1000 randomly generated trees of size 50

Volker Strehl () Let me count the ways ... or complex analysis meets complexity analysisJanuary 29, 2013 39 / 88

A bunch of examples Ordered Trees

Figure: Average level statistics for 1000 randomly generated trees of size 100
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A bunch of examples Ordered Trees

Figure: Average profile for 1000 randomly generated trees of size 50
(as a probability distribution)
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A bunch of examples Ordered Trees

Figure: Average height for 50 randomly generated trees of sizes from 10 to 100
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A bunch of examples Ordered Trees

Figure: Average height for 50 randomly generated trees of sizes from 10 to 100
compared to the function n 3→

√
πn − 1
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A bunch of examples Ordered Trees

Figure: Aver. aver. level for 50 randomly generated trees of sizes from 10 to 100
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A bunch of examples Ordered Trees

Figure: Aver. aver. level for 50 randomly generated trees of sizes from 10 to 100
compared to the function n 3→ 1

2 (
√
πn − 1)
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

Derivation as tree transformation
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x x
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Figure: Derivation of x · ex·x
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

The cost of taking derivatives

Consider terms (term trees) for simple arithmetic expressions
generated by the grammar

T → 0 | 1 | x | aTT |mTT | eT

Symbolic differentiation D w.r.t. x is a term(tree) transformation
given by

0 → 0 constant

1 → 0 constant

x → 1 variable

a t% tr → aD(t%)D(tr ) sum rule

m t% tr → a (m t%D(tr )) (mD(t%) tr ) product rule

e t → m (e t) (D(t)) exponent rule
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

The cost of taking derivatives

The size |t| of a termtree t is the number of its nodes
The cost cD(t) of D executed on a termtree t is |D(t)| so that

cD(0) = cD(1) = cD(x) = 1

cD(a t% tr ) = 1 + cD(t%) + cD(tr )

cD(m t% tr ) = 3 + |t%|+ |tr |+ cD(t%) + cD(tr )

cD(e t) = 2 + |t|+ cD(t)

Consider now the bivariate generating function

cD(u, z) =
∑

t∈T
ucD(t)z |t|

From the cost equations:

cD(u, z) = 3uz + uz cD(u, z)
2 + u3z cD(u, uz)

2 + u2z cD(u, uz)

There is no hope to solve such an equation explicitly!
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

The cost of taking derivatives

One obtains by iteration

cD(u, z) = 3uz + 3u4z2 + (9u3 + 9u7 + 3u8)z3

+ (18u6 + 9u8 + 18u119u12 + 3u13)z4 +O(z5)

Setting u = 1 gives the structure generating function

t(z) =
∑

n≥0

tn z
n = cD(1, z) =

1− z −
√
1− 2z − 23z2

4z

This generating function starts as follows:

t(z) = 3z + 3z2 + 21z3 + 57z4 + 327z5 + 1263z6 + 6753z7 +O
(
z8
)
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

The cost of taking derivatives

!0.5

0.0

0.5

!0.10

!0.05

0.00

0.05

0.10

0.0

0.5

1.0

Figure: Plot of the structure generating function |t(z)|

Visibly there are two algebraic singularities — that is where
1− 2z − 23z2 = 0 i.e. z = 1

23

(
−1± 2

√
6
)
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

The cost of taking derivatives

Knowing t(z) one can solve for the cumulative cost generating
function

c(z) =
∑

n≥0

cn z
n = ∂ucD(u, z)|u←1

where cn =
∑

|t|=n cD(t)
It turns out that

c(z) =
(1− 2z − 12z2) R − 1 + 3z + 34z2

4 z R2

where R =
√
1− 2z − 23z2

This generating function starts with

c(z) = 3z + 12z2 + 114z3 + 525z4 + 3711z5 + 19572z6

+ 124194z7 + 696585z8 + 4231131z9 + 24382812z10 +O
(
z11

)
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

The cost of taking derivatives

!1.0

!0.5

0.0

0.5

1.0
!1.0

!0.5

0.0

0.5

1.0

0
1
2

3

4

Figure: The cost generation function c(z) and its singularities

Visibly there are poles at precisely those positions where t(z) had
algebraic singularities
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

The cost of taking derivatives

So what is the asymptotic behaviour of the sequence

(
cn
tn

)

n≥0

?

The series expansions for t(z) and c(z) have the same radius of
convergence which is the absolute smallest (dominant) singularity
which is

ρ =
−1 + 2

√
6

23
≈ 0.169521

Since both series have the same radius of convergence it does not
help at all to consider just the exponential growth rate ....
one must look closer

So what is the behaviour of t(z) and of c(z) as z → ρ ?
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

Getting your hands dirty...or your computer busy

t(z) = −1

2

√
6− 12

2
√
6− 1

− 1

2

√
276− 23

√
6

2
√
6− 1

(
1− z

ρ

)1/2

+
23

4

1

2
√
6− 1

(
1− z

ρ

)

+
23

16

(
−71 + 4

√
6
)√

276− 23
√
6

2
√
6− 1

(
1− z

ρ

)3/2

+
23

4

1

2
√
6− 1

(
1− z

ρ

)4

+O
((

1− z

ρ

)5/2
)

= 1.2248− 1.9006X + 1.4748X 2 − 1.5225X 3 + 1.4748X 4 +O(X 5)

where X =

√
1− z

ρ
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

Getting your hands dirty...or your computer busy

c(z) =
1

48

(
126 +

√
6
)√

6
(
2
√
6− 1

)2

(
1− z

ρ

)−1

− 11

96

√
− 2

23 + 4
23

√
6 + 46 ρ2

(
−25 + 4

√
6
)√

6
(
2
√
6− 1

)2

(
1− z

ρ

)−1/2

− 23

192

109
√
6− 66

(
2
√
6− 1

)2

+
1

4416

−80640 + 89819
√
6

(
2
√
6− 1

)2 √− 2
23 + 4

23

√
6 + 46 ρ2

(
1− z

ρ

)1/2

+
23

4608

(
−2478 + 241

√
6
)√

6
(
2
√
6− 1

)2

(
1− z

ρ

)
+O

((
1− z

ρ

)3/2
)

= 0.43118X−2 + 0.36172X−1 − 3.1019 + 1.6108X − 1.5181X 2 +O
(
X 3

)
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

The cost of taking derivatives: the final result

The asymptotic behaviour turns out to be

[zn] t(z) = tn = ρ−n
(
0.53615 n−3/2 + 0.20105 n−5/2 +O(n−7/2)

)

[zn] c(z) = cn = ρ−n
(
0.43118 + 0.20408 n−1/2 +O(n−3/2)

)

where ρ−1 = 5.89898...

So the average case complexity behaves like

cn
tn

∼ 0.43118

0.53615
n3/2 = 0.8055... n3/2
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

0 500 1000 1500 2000

1.00

1.02

1.04

1.06

1.08

Figure: Plot of
cn/tn

0.8055n3/2
for n = 50..2000
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

Differentiation with shared subexpressions

Same setup for term trees and derivation as before: —
but now existing subexpresion are not copied, so that
Symbolic differentiation D

0 → 0, 1 → 0, x → 1

a t% tr → aD(t%)D(tr )

m t% tr → a (m t%D(tr )) (mD(t%) tr )

e t → m (e t) (D(t))

cost c̃D(t) is now

c̃D(0) = c̃D(1) = c̃D(x) = 1

c̃D(a t% tr ) = 1 + c̃D(t%) + c̃D(tr )

c̃D(m t% tr ) = 3 + 0 · |t!|+ 0 · |tr|+ c̃D(tr ) + c̃D(t)

c̃D(e t) = 2 + 0 · |t|+ c̃D(t)
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

Differentiation with shared subexpressions

The cost generating function

c̃(u, z) =
∑

t∈T
uc̃(t)z |t|

now satisfies

c̃D(u, z) = 3uz + uz c̃D(u, z)
2 + u3z c̃D(u, z)

2 + u2z c̃D(u, z)

The cumulative cost generating function

c̃(z) =
∑

n≥0

c̃n z
n = ∂u c̃D(u, z)|u←1

where c̃n =
∑

|t|=n c̃D(t) now starts

3 z + 9 z2 + 87 z3 + 345 z4 + 2403 z5 + 11553 z6 + 71319 z7 +O
(
z8
)
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

Differentiation with shared subexpressions

As before

t(z) = 1.2248− 1.9006X + 1.4748X 2 − 1.5225X 3 + 1.4748X 4 +O(X 5)

where X =

√
1− z

ρ

But now

c(z) =
1

32

1
(
1− 2

√
6
)2

a X
×

×
(
6608

√
6− 5328 + (368− 736

√
6) a X + (12819

√
6− 9894)X 2 +O(X

where a =
√
276− 23

√
6
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A bunch of examples Symbolic differentiation (still quite easy, but instructive)

Differentiation with shared subexpressions

As before, apply the transfer method to obtain

The asymptotic behaviour turns out to be

[zn] t(z) = tn = ρ−n
(
0.53615 n−3/2 + 0.20105 n−5/2 +O(n−7/2)

)

[zn] c(z) = cn = ρ−n
(
0.84967 n−1/2 − 0.10620 n−3/2 +O(n−5/2)

)

where ρ−1 = 5.89898...

So the average case complexity behaves like

cn
tn

∼ 0.84967

0.53615
n = 1.58476...n

Subexpression sharing decreases average case complexity from
O(n3/2) to O(n) !

This hold for large classes of term rewriting algorithms
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A bunch of examples Counting simply generated trees (a classic, not so easy)

Meir-Moon’s asymptotic counting of trees

Ω =
⋃

k≥0Ωk : a set of function symbols of different arities
(signature) with ωk = "Ωk

TΩ : Ω-(term)-trees so that

TΩ =
∑

ω∈Ω
ω.T ar(ω)

Ω =
∑

k≥0

∑

ω∈Ωk

ω.T k
Ω

TΩ,n : Ω-(term)-trees of size n, tΩ,n = "TΩ,n

Theorem: (under mild technical conditions)

tΩ,n =

√
ω(τ)

2π ω′′(τ)
ρ−n n−3/2

(
1 + O(

1

n
)

)

where ω(z) =
∑

k ωk zk and
τ is the smallest positive root of ω(z) = z ω′(z)
ρ = τ/ω(τ)
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A bunch of examples Counting simply generated trees (a classic, not so easy)

Meir-Moon’s asymptotic counting of trees

Some remarks about the proof
The generating function

tΩ(z) =
∑

t∈TΩ

zsize(t) =
∑

n≥0

tΩ,n zn

satisfies (uniquely) the fixed point equation

y(z) = z · ω(y(z))

The Implicit Function Theorem gives information about the existence
of a unique analytic solution in the vicinity of z = ρ
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A bunch of examples Counting simply generated trees (a classic, not so easy)

Meir-Moon’s asymptotic counting of trees

Some remarks about the proof (contd.)
In the vicinity of z = ρ

tΩ(z) = g(z) + h(z)

√
1− z

ρ

with analytic functions g(z), h(z) (around ρ) which satisfy

h(ρ) = τ and g(ρ) = −

√
2ω(τ)

ω′′(τ)

Under appropriate technical conditions the (dominant) singularity of
tΩ(z) at z = ρ is well-behaved (is a “Camembert-singularity”) –
thus the Transfer Principle can be applied
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A bunch of examples Back to height and pathlength of ordered trees

Average level and height of ordered trees

The average level (or pathlength) of ordered trees can be
obtained

1 by a similar technique as used for evaluation of symbolic
differentiation....

2 by an argument that employs Lagrange’s formula...

There seems to be an intimate relation between average height and
average level . . .

1 This is somewhat surprising!
2 So why is that indeed the case?
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A bunch of examples Back to height and pathlength of ordered trees

The number of ordered trees

Counting ordered trees is easy!
Let tn = the number of ordered trees with n nodes
Let t(z) =

∑
n≥0 tn z

n be the generating function

t(z) = z + z2 + 2z3 + 5z4 + 14z5 + 42z6 · · ·

Catalan numbers show up again!
From the structure of ordered trees

t(z) = z︸︷︷︸
↑

root

·( 1︸︷︷︸
↑
no

subtree

+ t(z)︸︷︷︸
↑
one

subtree

+ t(z)2︸ ︷︷ ︸
↑
two

subtrees

+ t(z)3︸ ︷︷ ︸
↑

three
subtrees

+ · · · )

= z · 1

1− t(z)

and thus

t(z) =
1−

√
1− 4z

2
tn =

1

n

(
2n − 2

n − 1

)
= dn−1
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A bunch of examples Back to height and pathlength of ordered trees

Level distribution of ordered trees

Comment: There is a neat correspondence between binary trees with
n internal nodes and ordered trees with n + 1 nodes (and Dyck words
of length 2n), which has been studied and used a lot . . .

. . . but height and pathlength do not behave well w.r.t. to it

Consider now

&n,k = total number of nodes on level k in all trees of size n

This quantity has a nice expression

&n,k =
2k + 1

n + k

(
2n − 2

n − k − 1

)

In particular: &n,0 = tn = dn−1
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A bunch of examples Back to height and pathlength of ordered trees

Level distribution of ordered trees

Figure: Ordered trees of size 4

level distribution: &4,0 = 5, &4,1 = 9, &4,2 = 5, &4,3 = 1
cumulated pathlength:

3 + 4 + 4 + 5 + 6 = 22 = 0 · &4,0 + 1 · &4,1 + 2 · &4,2 + 3 · &4,3
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A bunch of examples Back to height and pathlength of ordered trees

A closer combinatoriel look

Determining &n,k via generating functions
Claim: &n,k is the coefficient of zn in the series expansion (around
z = 0) of the function

zk · t(z) · 1

(1− t(z))2k

The explanation (case k = 3):
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A bunch of examples Back to height and pathlength of ordered trees

from the very early days of complex analysis ... Lagrange!

A version of Lagranges’s formula
Let φ(z) be a known “analytic” function around z = 0 with φ(0) "= 0
Let w(z) be the “analytic” function defined implicitly by

w(z) = z · φ(w(z))

(implicit function theorem!)
Then:

coefficient of zn in the series expansion of w(z)k

=

k

n
· coefficient of zn−1 in the series expansion of zk−1 · φ(z)n

shorthand:

[zn]w(z)k =
k

n
[zn−1] zk−1 · φ(z)n

This is residue calculus + variable transform
This helps, if φ(z) is sufficiently simple . . .
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A bunch of examples Back to height and pathlength of ordered trees

now let’s calculate . . .

For ordered trees: t(z) = z
1−t(z) , so φ(z) = 1

1−z

Let’s go ...

&n,k = [zn] zk · t(z) · 1

(1− t(z))2k
the tree decomposition

= [zn] zk · t(z)2k+1 using t(z) =
1

1− t(z)

= [zn+k ] t(z)2k+1 just shifting

=
2k + 1

n + k
· [zn+k−1] z2k · 1

(1− z)n+k
Lagrange strikes with

φ(z)= 1
1−z

=
2k + 1

n + k
· [zn−k−1]

1

(1− z)n+k
shifting again

=
2k + 1

n + k

(
2n − 2

n − k − 1

)
Newtons binomial theorem
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A bunch of examples Back to height and pathlength of ordered trees

Level distribution: the result

Consequence:
By Stirling’s formula one obtains for the average number of nodes on
level k in trees of size n:

&n,k =
&n,k
tn

=
2k + 1

n + k
·
( 2n−2
n−k−1

)

n ·
(2n−2
n−1

) ∼ 2 k e−k2/n

(at least if k ≈
√
n)

Put k = λ
√
n, then

&n,λ√n ∼ 2λ
√
n e−λ2

and this achieves its maximum (for n fixed) at λ = 1/2
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A bunch of examples Back to height and pathlength of ordered trees

Sampled profiles (blue) for ordered trees, compared to true average (red),
50 samples for n = 50 (left), 500 samples for n = 100(right)
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A bunch of examples Back to height and pathlength of ordered trees

more juggling with generating series...

The cumulated pathlength for trees of size n is (with t ≡ t(z))
∑

k

k &n,k =
∑

k

k [zn] z−kt2k+1 decomposition

= [zn]
∑

k

k z−kt2k+1 linearity

= [zn] t ·
∑

k

k
(
t2/z

)k
rearranging

= [zn] t · t2/z

(1− t2/z)2
derivative of

geometric series

= [zn] z t · t2

(z − t2)2
rearranging

= [zn−1]
t

(1− 2t)2
using z − t2 = t − 2t2

= 1
2(4

n−1 −
(2n−2
n−1

)
) using 1− 2t =

√
1− 4z
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A bunch of examples Back to height and pathlength of ordered trees

Average level: the result

Consequence:
The average level of nodes in ordered trees of size n is

∑
k k · &n,k
n · tn

=
1
2 (4

n−1 −
(2n−2
n−1

)
)

n · 1
n

(2n−2
n−1

) ∼n→∞
1

2

√
πn − 1

2
+O(n−1/2)
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A bunch of examples Back to height and pathlength of ordered trees

Height vs. pathlength

What about height?

height is an important parameter, but difficult to treat, because

height(tree) = 1 + maxt∈subtrees(tree)height(t)

and max is a nonlinear function!

Compare pathlength:

pathlength(tree) =
∑

t∈subtrees(tree)

pathlength(t) + size(t)

which is linear (additive)
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A bunch of examples Back to height and pathlength of ordered trees

The fundamental results

(de Bruijn-Knuth-Rice, 1972)
The average height of ordered trees with n nodes behaves as

∼n→∞
√
πn

(Flajolet-Odlyzko, 1982)
The average height of binary trees with n internal nodes behaves as

∼n→∞ 2
√
πn
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A bunch of examples Back to height and pathlength of ordered trees

... a completely different approach ... level sequences

The result for the height of ordered trees can be obtained
combinatorially (no complex analysis needed !!) from the above result
about the average level
Ordered trees of size n can be represented by level sequences

t 3→ &(t) = (&1, &2, . . . , &n)

where &1 = 0, 0 < &j+1 ≤ &j + 1 (1 ≤ j < n)
(recording node levels in preorder traversal)
Ln : level sequences of length n
Example: Tree with level sequence & = (0, 1, 2, 3, 4, 4, 4, 2)
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A bunch of examples Back to height and pathlength of ordered trees

level sequences of ordered trees

height and pathlength translate easily

height(t) = max
1≤j≤n

&j =: µ(&)

pathlength(t) = &1 + &2 + · · ·+ &n =: λ(&) · n

So λ(&) is the average level in t
Interesting fact:

There exists an involution & 3→ &̃ on Ln which satisfies

λ(&) + λ(&̃)− 1 <
µ(&) + µ(&̃)

2
≤ λ(&) + λ(&̃)

This is tricky, as it requires an extension of the concept of level
sequences to sequences which do no longer correspond to trees ...

Consequence (by averaging over Ln):

µn ≈ 2λn ∼n→∞ 2
√
πn
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A bunch of examples Back to height and pathlength of ordered trees

level sequences of ordered trees and more

Generalized level sequences of length n are sequences
& = (&1, &2, . . . , &n) such that

&1 ≤ 0, &n ≥ 0, &j+1 ≤ &j + 1 (1 ≤ j < n)

GLn : generalized level sequences of length n, "GLn =
(2n−1

n

)

Shifting generalized level sequences

σ(&1, &2, . . . , &n) 3→
{
(&2 − 1, . . . , &n − 1, 0) if &1 = 0

(&1 + 1, &2 + 1, . . . , &n + 1) if &1 < 0

Facts:
GLn decomposes into σ-orbits of length 2n − 1
Each σ-orbit contains exactly one level sequence (alias tree!)
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A bunch of examples Back to height and pathlength of ordered trees

Example of a σ-orbit in LS6

0 1 2 1 2 3 ∈ L6
0 1 0 1 2 0
0 −1 0 1 −1 0

−2 −1 0 −2 −1 0
−1 0 1 −1 0 1 ↓ σ
0 1 2 0 1 2
0 1 −1 0 1 0
0 −2 −1 0 −1 0

−3 −2 −1 −2 −1 0
−2 −1 0 −1 0 1
−1 0 1 0 1 2
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A bunch of examples Back to height and pathlength of ordered trees

Two σ-orbits in GL6 related by the reflection

ρ : (&1, &2, . . . , &n) 3→ (−&n, . . . ,−&2,−&1)

and the definition of & 3→ &̃

& 0 1 2 1 2 1 −1 −2 −1 −2 −1 0
0 1 0 1 0 0 0 0 −1 0 −1 0
0 −1 0 −1 −1 0 0 1 1 0 1 0

−2 −1 −2 −2 −1 0 0 1 2 2 1 2 &̃
−1 0 −1 −1 0 1 −1 0 1 1 0 1

↓ σ 0 1 0 0 1 2 −2 −1 0 0 −1 0 ↑ σ
0 −1 −1 0 1 0 0 −1 0 1 1 0

−2 −2 −1 0 −1 0 0 1 0 1 2 2
−1 −1 0 1 0 1 −1 0 −1 0 1 1
0 0 1 2 1 2 −2 −1 −2 −1 0 0

−1 0 1 0 1 0 0 −1 0 −1 0 1
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A bunch of examples Things can get rather more complicated: balanced 2-3 trees

Balancing trees makes the analysis difficult

Consider now the familiar balanced 2-3 trees:

Figure: Balanced 2-3-trees with 8 leaves

Internal nodes have 2 or 3 successors
All leaves on the same height
size is the number of leaves
en = number of balanced 2-3 trees of size n
First values

n 0 1 2 3 4 5 6 7 8 9 10
en 0 1 1 1 1 2 2 3 4 5 8
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A bunch of examples Things can get rather more complicated: balanced 2-3 trees

Apparent simplicity can fool you...

Sequence (en)n≥0 seems to grow slowly but

e100 = 5520498313790316062

So how fast does this sequence really grow?

Generating function e(z) =
∑

n≥0 en z
n satisfies

e(z) = z + e(z2 + z3)

which is equivalent to

en =
n∑

k=0

(
k

n − 2k

)
ek , e0 = 0, e1 = 1

looks “innocuous”, but isn’t!
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A bunch of examples Things can get rather more complicated: balanced 2-3 trees

Digging deeper — and finding φ again

Let σ(z) = z2 + z3 and consider the sequence by composition

σ(t+1)(z) = σ(σ(t)(z)) σ(0)(z) = z

Then by unfolding the fixed-point equation

e(z) = σ(0)(z) + σ(1)(z) + σ(2)(z) + σ(3)(z) + · · ·

The equation σ(z) = z has ρ = φ−1 as unique positive fixed point

Easy exercise:
(
σ(n)(z)

)
n≥0

→ 0 (rapidly) for any z ∈ C with |z | < ρ

Easy exercise: e(z) is unbounded as z → ρ−

ρ = φ−1 is the radius of convergence of e(z) hence:

en 2
(
1 +

√
5

2

)n
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A bunch of examples Things can get rather more complicated: balanced 2-3 trees

For more information: work harder!

But what about the subexponential factor?
Needs analysis using the nature of the singularity
On gets

en =
φn

n
Ω(log n) +O(

φn

n2
)

where Ω(z) is a periodic function with mean φ log(4− φ) ≈ 0.71208
and period log(4− φ) ≈ 0.86792
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Figure: Plot of en/(φn/n) for n = 1..400 in logarithmic scale

Volker Strehl () Let me count the ways ... or complex analysis meets complexity analysisJanuary 29, 2013 86 / 88

A bunch of examples Things can get rather more complicated: balanced 2-3 trees

The fractal nature of convergence

Figure: Domain of “analyticity” and circle of convergence of e(z)

Picture taken from the “definitive” book Analytic Combinatorics
by Ph. Flajolet and R. Sedgewick, Cambridge UP, 2009.
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