#### Component Interfaces with Contracts on Ports

#### Rolf Hennicker

Ludwig-Maximilians-Universität München, Germany

Joint work with Sebastian Bauer, Axel Legay

Rolf Hennicker (LMU) 1 / 23

#### Introduction

- Reactive software components interact with their environment; they have a significant dynamic behavior depending on states.
- Interface specifications are important for the correct usage of a component ("black box") and also for the correct implementation of a component.
- Crucial aspects:
  - Compatibility of interfaces of interacting components (no communication errors!)
  - Implementation of interface specifications (correct refinement!)
- Dimensions of system development:
  - Compatibility ("horizontal" dimension)
  - Refinement ("vertical" dimension)
  - Composition ("horizontal" dimension, hierarchical development)

Rolf Hennicker (LMU) 2 / 23

# Requirement 1: Preservation of Compatibility by Refinement

Rolf Hennicker (LMU) 3 / 23

# Requirement 2: Preservation of Refinement by Composition

if  $S \leftrightarrows T$ , then

$$S$$
  $S \otimes T$   $S \otimes T$   $S' \otimes T'$ 

Rolf Hennicker (LMU) 4 / 23

### Interface Theory

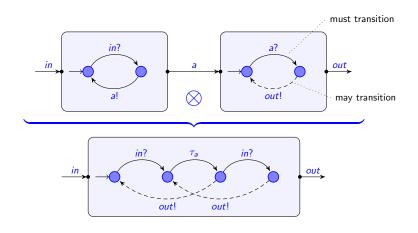
#### Definition (inspired by De Alfaro, Henzinger)

An **interface theory** is a tuple  $(\mathfrak{S}, \leq, \leftrightarrows, \otimes)$  consisting of

- a class S of specifications
- a reflexive and transitive **refinement relation**  $\leq \subseteq \mathfrak{S} \times \mathfrak{S}$
- a symmetric **compatibility relation**  $\leftrightarrows \subseteq \mathfrak{S} \times \mathfrak{S}$
- a partial, commutative **composition operator**  $\otimes$  :  $\mathfrak{S} \times \mathfrak{S} \to \mathfrak{S}$
- satisfying
  - Preservation of compatibility
  - Compositional refinement

Rolf Hennicker (LMU) 5 / 23

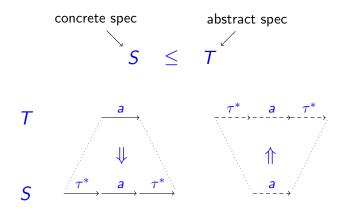
# Example: Modal Input/Output Automata (MIOs) [Larsen, Nyman, Wasowski 2007]



" $must \otimes must = must$ "

Rolf Hennicker (LMU) 6 / 23

# Weak Modal Refinement [Hüttel, Larsen 1989]

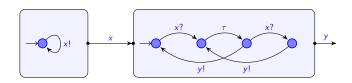


- If all transitions are "may", then  $\leq$  is weak trace inclusion.
- If all transitions are "must", then < is weak bisimulation.

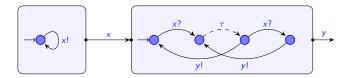
Rolf Hennicker (LMU) 7 / 23

# Weak Compatibility [Bauer et al. 2010]

Weakly compatible MIOs:



Incompatible MIOs:



**Theorem:** MIOs with weak modal refinement, weak compatibility and synchronous composition form an interface theory.

Rolf Hennicker (LMU) 8 / 23

#### We need more ...

Interface Theories provide

 a nice abstract framework focusing on rudimentary requirements for component-based design.

But

• there is a lack of structure; they do not provide any mechanism to identify communication points.

Interface specification (no structure)

F

Rolf Hennicker (LMU) 9 / 23

## Labeled Interface Theory

#### **Definition**

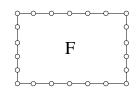
A labeled interface theory is a quadruple  $(\mathfrak{S},\mathcal{L},\ell,\leq,\leftrightarrows,\otimes)$  consisting of

- an interface theory  $(\mathfrak{S}, \leq, \leftrightarrows, \otimes)$ ,
- a set L of labels,
- ullet a function  $\ell:\mathfrak{S} o\wp_{\mathrm{fin}}(\mathcal{L})$  assigning a finite set of labels, such that
  - if  $\ell(S) \cap \ell(T) = \emptyset$ , then  $S \otimes T$  is defined,
  - If  $S \otimes T$  is defined, then  $\ell(S \otimes T) = (\ell(S) \cup \ell(T)) \setminus (\ell(S) \cap \ell(T))$ ,
  - ...

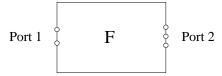
Rolf Hennicker (LMU) 10 / 23

# From Labeled Interfaces to Component Interfaces

(1) Interface specification with labels



(2) Interface specification with ports



Rolf Hennicker (LMU) 11 / 23

## From Labeled Interfaces to Component Interfaces

(3) Interface specification with port specifications (protocols)

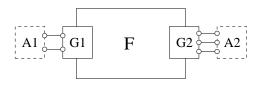


(4) Interface specification with port contracts



Rolf Hennicker (LMU) 12 / 23

### Semantic Requirements



#### Reliability:

The frame specification F should satisfy each guarantee (on one port) under the given assumptions (on the other ports), i.e.

$$A1 \otimes F \leq G2$$
 and  $A2 \otimes F \leq G1$ .

#### 2 Compatibility on ports:

Each port contract should have compatible assumptions and guarantees, i.e.

$$A1 \leftrightarrows G1$$
 and  $A2 \leftrightarrows G2$ .

Rolf Hennicker (LMU) 13 / 23

# Port Contracts and Component Interfaces (formally)

Given a labeled interface theory  $(\mathfrak{S}, \mathcal{L}, \ell, \leq, \leftrightarrows, \otimes)$ .

#### **Definition**

A port contract is a pair (A, G) with  $A, G \in \mathfrak{S}$  such that  $\ell(A) = \ell(G)$  and  $G \leftrightarrows A$ .

#### **Definition**

A component interface is a pair  $C = (F, \{P_1, \dots P_n\})$  such that

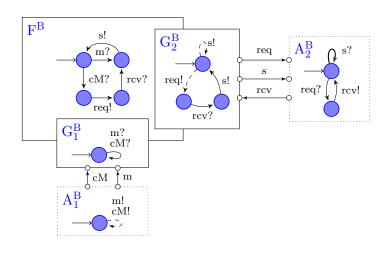
- $F \in \mathfrak{S}$  is an interface specification, called *component frame*,
- $\{P_1, \dots P_n\}$  is a set of port contracts  $P_i = (A_i, G_i)$ .

#### such that:

- $\bullet \ell(F) = \ell(P_1) \cup \ldots \cup \ell(P_n),$
- $\ell(P_i) \cap \ell(P_i) = \emptyset$  for all  $i \neq j$ ,
- $(A_1 \otimes \ldots \otimes A_{i-1} \otimes A_{i+1} \ldots \otimes A_n \otimes F) \leq G_i for i = 1, \ldots, n.$

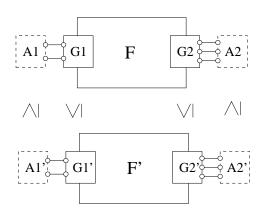
Rolf Hennicker (LMU) 14 / 23

## Example: Broker with Port Contracts



Rolf Hennicker (LMU) 15 / 3

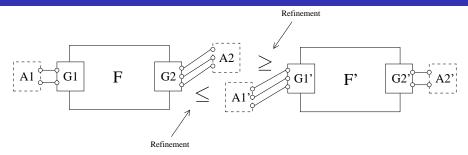
# Refinement of Component Interfaces



Notation:  $C' \sqsubseteq C$ 

Rolf Hennicker (LMU) 16 / 23

## Compatibility of Component Interfaces



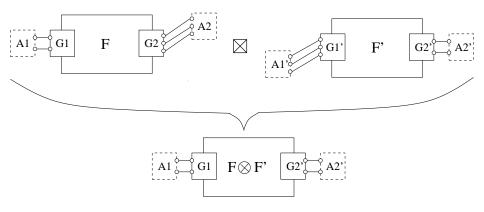
**Notation:** *C ⇔ C'* 

Facts: If  $C \stackrel{\Leftarrow}{\longrightarrow} C'$  then

- $G2 \leftrightarrows G1'$
- $A1 \otimes F \leftrightarrows A2' \otimes F'$
- if  $E1 \le A1, I \le F$  and  $E2' \le A2', I' \le F'$ , then  $E1 \otimes I \leftrightarrows E2' \otimes I'$
- if  $E1 \le A1$ ,  $A1 \otimes I \le G2$  and  $E2' \le A2'$ ,  $A2' \otimes I' \le G1'$ , then  $E1 \otimes I \leftrightarrows E2' \otimes I'$

Rolf Hennicker (LMU) 17 / 23

## Composition of Compatible Component Interfaces



#### Composition preserves reliability:

$$(A1 \otimes F \otimes F') \leq G2'$$
 and  $(A2' \otimes F' \otimes F) \leq G1$ .

*Proof:*  $A1 \otimes F \leq G2 \leq A1'$  and  $A1' \otimes F' \leq G2'$ .

Hence,  $(A1 \otimes F \otimes F') \leq A1' \otimes F' \leq G2'$ .

Rolf Hennicker (LMU) 18 / 23

#### Results

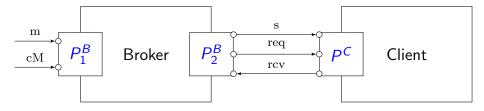
- Preservation of component compatibility by component refinement:  $C \stackrel{\text{\tiny $4$}}{=} D$ ,  $C' \sqsubseteq C$  and  $D' \sqsubseteq D$  implies  $C' \stackrel{\text{\tiny $4$}}{=} D'$ .
- Preservation of component refinement by component composition:  $C' \sqsubseteq C, D' \sqsubseteq D$  and  $C \stackrel{\text{def}}{=} D$  implies  $C' \boxtimes D' \sqsubseteq C \boxtimes D$ .

#### Theorem:

Let  $LTh = (\mathfrak{S}, \mathcal{L}, \ell, \leq, \leftrightarrows, \otimes)$  be an arbitrary labeled interface theory. The class of component interfaces over LTh is itself a labeled interface theory with  $\sqsubseteq, \leftrightarrows$  and  $\boxtimes$ .

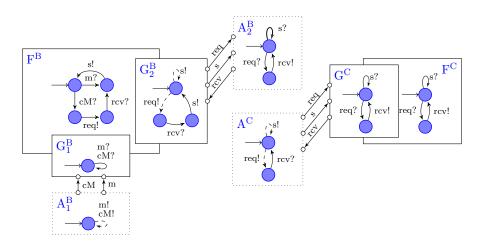
Rolf Hennicker (LMU) 19 / 23

# Example: Broker and Client Components



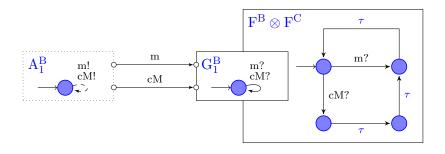
Rolf Hennicker (LMU) 20 / 23

# Example: Broker and Client Component Interfaces



Rolf Hennicker (LMU) 21 / 23

## Example: Composition of Broker and Client Interfaces



Rolf Hennicker (LMU) 22 / 2:

#### Conclusion

- Interface theories are a nice abstract framework but they lack structure for proper component-based design.
- Just by introducing labels for interfaces one can do a lot more.
- One can construct a generic, contract-based framework for component interfaces with ports on top of any labeled interface theory.
- Instantiation by modal I/O-transition systems.
- Further instantiations should be studied, e.g. integrating data constraints, asnychronous communication, ...
- Application to established design languages (like Wright, UML).

• Tool support by extending the MIO-Workbench.

Rolf Hennicker (LMU) 23 / 23