
A Relatively Complete Hoare Logic
for Order-Enriched Effects

Sergey Goncharov and Lutz Schröder

October 30, 2012

2 / 26
Classical Hoare Logic

• Jundments: partial correctness assertions: {φ} p {ψ}
where

I φ (precondition) and ψ (postcondition) are
state-dependent logical assertions;

I p is a program over the underlying state.

• Logic: FOL + (Peano) arithmetic + conventional
operations (reading from the memory).

• Semantics: [[φ]], [[ψ]] : S→ {0, 1}, [[p]] : S→ S+ 1 where
S = L→ V (or S = L→ V + 1) is the state.

Given a state σ ∈ S:

σ |= {φ} p {ψ} ⇐⇒ (σ |= φ =⇒ ∃σ ′ = [[p]](σ). σ ′ |= ψ)

3 / 26
Classical Hoare Logic: Some Examples

• {x > 1} x := x+ 1 {x > 2};

• always: {⊥} p {ψ} and {φ} p {>};
• more involved example (factorial):

{x = 1; i := 1}

while (i < n) do

i := i+ 1;

x := x ∗ i;
{x = n!}

4 / 26
Classical Hoare Logic: Calculus

(skip)
{φ} skip {φ}

(assign)
{φ[a/x]} x := a {φ}

(seq)
{φ} p {ψ} {ψ} q {ξ}

{φ} p;q {ξ}

(if)
{φ∧ b} p {ψ} {φ∧ ¬b} q {ψ}

{φ} if b then p else q {ψ}

(while)
{φ∧ b} p {φ}

{φ} while b do p {φ∧ ¬b}

(weak)
φ⇒ φ ′ {φ ′} p {ψ ′} ψ ′ ⇒ ψ

{φ} p {ψ}

5 / 26
Classical Hoare Logic: Properties

• Hoare logic as presented is sound:

Γ1, . . . , Γn ` Γ implies Γ1, . . . , Γn |= Γ .

Proof: routine verification (boring).

• Hore logic is incomplete (!) for |= {>} p {⊥} iff p does
not terminate (non-r.e.).

• Hoare logic is relatively complete or complete in sense of
Cook. That is:

|= {φ} p {ψ} iff Φ ` {φ} p {ψ}

where Φ is the set of all valid assertions.

6 / 26
Classical Hoare Logic: Relative Completeness (1/3)

Weakest precondition wp(p,ψ) is the weakest assertion such that
{wp(p,ψ)} p {ψ}. Therefore:

{φ} p {ψ} ⇐⇒ (φ⇒ wp(p,ψ))

Scheme of the proof:

|= {φ} p {ψ}

 |= φ⇒ wp(p,ψ) (1)

 Φ ` φ⇒ wp(p,ψ) (2)

 Φ ` {φ} p {ψ} (3)

This amounts to the properties:

• Existence and uniqness of wp (1).
• Expressiveness: sufficient strength of the assertion logic to

characterize wp (2).
• Provability of {wp(p,ψ)} p {ψ} (3).

7 / 26
Classical Hoare Logic: Relative Completeness (2/3)

Weakest precondition can be defined inductivelly by the clauses:

wp(skip,ψ) = ψ,

wp(x := a,ψ) = ψ[a/x],

wp(p;q,ψ) = wp(p, wp(q,ψ)),

wp(if b then p else q,ψ) = (b⇒ wp(p,ψ))∧ (¬b⇒ wp(q,ψ)),

wp(while b do p,ψ) =
∧
k>0

ξk where

ξ0 = true and ξk+1 = (b⇒ wp(p, ξk))∧ (¬b⇒ ψ).

It is provable by induction that this indeed the weakest precondition
and Φ ` {wp(p,ψ)} p {ψ}.

Note: the same story can be told in terms of strongest
postconditions sp(p,φ).

8 / 26
Classical Hoare Logic: Gödel’s Hack

Note that wp(while b do p,ψ) as given is not expressible in
the language.

Let β(x1, x2, x3) = rem(x+ 1, 1 + (x3 + 1) ∗ x2) (Gödel’s
β-function).

The β-lemma: for any sequence of natural numbers
k1,k1, . . . ,kn, there are natural numbers b and c such that,
for every i 6 n, β(b, c, i) = ki.

Hence, a statement ∀k.∀n1, . . . ,nk. φ(ni) translates to
∀k. ∀a,b. φ(β(b, c, i)).

9 / 26
Monads Enter

Recall that programs and assertions were interpreted over
S→ S+ 1 and S→ 2 correspondingly.

Let TA = S→ (S×A) + 1 (state monad)
and PA = S→ A+ 1 (reader monad).

Then ΩT = P1 = S→ 2 is a boolean algebra.

More examples:

• TA = A+ E (exeptions), PA = A+ 1, ΩT = 2;

• TA = P(A) (non-determinism), PA = A+ 1, ΩT = 2;

• TA = S→ P(S×A) (states + exeptions),
PA = S→ A+ 1, ΩT = S→ 2.

• . . .

10 / 26
Monads for Generic Programming

Strong monad T: Underlying category C, endofunctor
T : C→ C, unit: η : Id→ T and Kleisli star

† : hom(A, TB)→ hom(TA, TB)

plus strength: τA,B : A× TB→ T(A× B).

Metalanguage of effects:

• TypeW ::=W | 1 | TypeW × TypeW | T(TypeW)

• Term construction (Cartesian operators omitted):

x : A ∈ Γ
Γ � x : A

Γ � t : A
Γ � f(t) : B

(f : A→ B ∈ Σ)

Γ � t : A
Γ � ret t : TA

Γ � p : TA Γ , x : A� q : TB

Γ � do x← p;q : TB

11 / 26
Algebraic Operations

Definition: Given n ∈ N and a monad T over C, a natural
transformation αX : (TX)n → TX is an (n-ary) algebraic
operation if

α〈do x← pi;q〉i = do x← α〈pi〉i;q

Examples include:

• Exception raising: one constant throw : T0 → T .

• Finite nondeterminism: one constant nil : T0 → T and
one operation: choice : T2 → T . E.g. for P monad:

choice(nil,p) = choice(p,nil) = p.

• States: lookupl : T
V → T and updatel,vT → T with

l ∈ L, v ∈ V. E.g. for state monad:

updatel,v
(
lookupl〈p1, . . . ,p|V |〉

)
= updatel,v(pv).

12 / 26
Generic Effects

Under mild assumptions algebraic operations are in
one-to-one correspondence with generic effects, i.e.
morphisms from hom(A, TB) [Plotkin and Power, 2001].

Algebraic operations Generic effects

lookup : TV → TL,
update : T → TL×V

get : L→ TV,
put : L× V → T1

nil : T0 → T1,
choice : T2 → T

nil0 : 1→ T0,
coin : 1→ T2

throw : T0 → TE throw0 : E→ T0

Notably exception handling is not algebraic.

13 / 26
Fixpoint Computations and Order-Enrichment

Let 2 = 1 + 1, with C being distributive. We are targeting

(while)
Γ , x : A� φ : 2 Γ � p : TA Γ , x : A� q : TA

Γ � init x← p while φ do q : TA

Definition: A strong monad T over C is order-enriched if the
following conditions hold.

• Every hom(A, TB) carries a partial order v, with a bottom ⊥.
• Every hom(A, TB) has joins of all directed subsets and has

joins of all f,g such that f v h, g v h for some h.
• For any h ∈ hom(A ′,A) and any u ∈ hom(B× C, TB ′)

f 7→ f ◦ h, f 7→ u† ◦ f, f 7→ τ〈id, f〉.

preserve all existing joins (including ⊥).
• Kleisli star is Scott-continuous, i.e. if {fi | i ∈ I} is a directed

subset of hom(A, TB), then
⊔
i∈I
f
†
i =

(⊔
i∈I
fi
)†

.

13 / 26
Fixpoint Computations and Order-Enrichment

Let 2 = 1 + 1, with C being distributive. We are targeting

(while)
Γ , x : A� φ : 2 Γ � p : TA Γ , x : A� q : TA

Γ � init x← p while φ do q : TA

Definition: A strong monad T over C is order-enriched if the
following conditions hold.

• Every hom(A, TB) carries a partial order v, with a bottom ⊥.
• Every hom(A, TB) has joins of all directed subsets and has

joins of all f,g such that f v h, g v h for some h.
• For any h ∈ hom(A ′,A) and any u ∈ hom(B× C, TB ′)

f 7→ f ◦ h, f 7→ u† ◦ f, f 7→ τ〈id, f〉.

preserve all existing joins (including ⊥).
• Kleisli star is Scott-continuous, i.e. if {fi | i ∈ I} is a directed

subset of hom(A, TB), then
⊔
i∈I
f
†
i =

(⊔
i∈I
fi
)†

.

14 / 26
Innocence

Definition: Given an order-enriched monad T,

• Two programs p and q commute if
do x← p;y← q; ret〈x,y〉 = do y← p; x← q; ret〈x,y〉

• a program p is copyable w.r.t. T if
do x← p;y← p; ret〈x,y〉 = do x← p; ret〈x, x〉;
• a program p is weakly discardable w.r.t. T if

do y← p; ret ? v ret ?;

• T is innocent if it is commutative and any program over
it is weakly discardable and copyable.

In Nutshell: Innocent monads capture relatively well-behaved
computations, but possibly non-terminating.

15 / 26
Innocent Monad for Assertions

Examples:

• Every enriched monad has the partiality monad as the
smalles innocent monad.

• The (partial) reader monad PA = S→ A+ 1 is innocent.

Theorem: Given an innocent monad P,

1. For any two programs p : P1 and q : P1,

puq = do p;q = do q;p.

2. The object P1 carries a complete Heytling algebra whose
underlying distributive lattice structure (δ,υ, ε, ρ) agrees
with the order-enrichment as follows: ⊥A,1 = δ ◦ !A,
ftg = υ ◦ 〈f,g〉, >A,1 = ε ◦ !A, fug = ρ ◦ 〈f,g〉.

16 / 26
A Simple Imperative Metalanguage

(var)
x : A ∈ Γ
Γ � x : A

(op)
f : A→ B ∈ Σ Γ � t : A

Γ � f(t) : B
(1)

Γ � ? : 1

(pair)
Γ � t : A Γ � u : B

Γ � 〈t,u〉 : A× B
(pr1)

Γ � t : A× B
Γ � pr1 t : B

(pr2)
Γ � t : A× B
Γ � pr2 t : B

(0)
Γ � 0 : 2

(1)
Γ � 1 : 2

(if)
Γ � b : 2 Γ � s : A Γ � t : A

Γ � if b thens else t : A

(do)
Γ � p : TA Γ , x : A� q : TB

Γ � do x← p;q : TB
(ret)

Γ � p : A

Γ � retp : T♦A

(♦)
Γ � p : T♦A

Γ � p : TA
(while)

Γ � φ : 2 Γ � p : TA Γ , x : A� q : TA

Γ � init x← p while φ do q : TA

17 / 26
Assertions

(>)
Γ �> : ΩT

(∧)
Γ � φ : ΩT Γ �ψ : ΩT

Γ � φ∧ψ : ΩT
(∃) Γ , x : A� φ : ΩT

Γ � ∃x.φ : ΩT

(⊥)
Γ �⊥ : ΩT

(∨)
Γ � φ : ΩT Γ �ψ : ΩT

Γ � φ∨ψ : ΩT
(∀) Γ , x : A� φ : ΩT

Γ � ∀x.φ : ΩT

(⇒)
Γ � φ : ΩT Γ �ψ : ΩT

Γ � φ⇒ ψ : ΩT

(cast)
Γ � p : T♦A Γ , x : A� φ : ΩT

Γ � do x← p;φ : ΩT
(pred)

A→ ΩT ∈ Γ
Γ � X : A→ ΩT

(λ)
Γ , x : A� t : ΩT

Γ � λx. t : A→ ΩT
(app)

Γ � t : A Γ � s : A→ ΩT

Γ � s(t) : ΩT

(µ)
Γ ,X : A→ ΩT � φ : A→ ΩT

Γ � µX.φ : A→ ΩT
(ν)

Γ ,X : A→ ΩT � φ : A→ ΩT

Γ � νX.φ : A→ ΩT

18 / 26
Hoare Logic

We define global judjments [[x← p]]φ by the equivalence:

[[x← p]]φ ⇐⇒ (do x← p;φ; ret x) = p.

Then let {φ}x← p{ψ} = [[φ; x← p]]ψ.

Some rules:

{φ} x← p {ψ}

{φ} x← p {χ}

{φ} x← p {ψ∧ χ}

{ψ∧ φ?} x← p {χ}

{ψ∧ ¬φ?} x← q {χ}

{ψ} x← (if φ thenp else q) {χ}

{φ} y← q {χ}

{ψ} y← q {χ}

{φ∨ψ} y← q {χ}

{ψ} x← p {χ}

{χ∧ φ?} x← q {χ}

{ψ} x← (init x← p while φ do q) {χ∧ ¬φ}

19 / 26
Relative Completeness (1/2)

Let us define the weakest precondition:

wp(y← q,ψ) =
⊔{

φ | {φ} y← q {ψ}
}

.

The desirable properties are:

wp1. wp(x← ret t,ψ) ⇐⇒ ψ[t/x].

wp2. wp(x← f(t),ψ) ⇐⇒ wp(x← f(z),ψ)[t/z], with z — any
fresh variable

wp3. wp(x← (do y← p;q),ψ) ⇐⇒ wp(y← p,wp(x← q,ψ))

wp4. wp(x← (if b thenp else q),ψ) ⇐⇒
(b?⇒ wp(x← p,ψ))∧ (b̄?⇒ wp(x← q,ψ))

wp5. wp(x← (while b do x← p),ψ) ⇐⇒
νX.(λx.b?⇒ wp(x← p,X(x))∧ b̄?⇒ ψ)(x)

Theorem: If wp3 holds (let call it expressiveness) then so do the
remaining properties.

20 / 26
Relative Completeness (2/2)

Theorem (Relative Completeness): Let T be and enriched
monad; let P be an innocent submonad of it. Suppose

1. P is expressive w.r.t. T;

2. for every f : A→ TB ∈ ΣT and every assertion φ the
weakest precondition wp(x← f(y),ψ) can be
represented by a formula of the assertion language.

Then T,P |= {φ} x← p {ψ} iff Φ∪∆ ` {φ} x← p {ψ} where

• Φ is the set of all assertions valid in P;

• ∆ is the set of formulas

{wp(x← f(y),ψ)} x← p {ψ}.

21 / 26
Troubles (1/3)

What exactly expressiveness amounts to?

Let us introduce the strongest postcondition as follows:

sp(x,q) =
l{

φ | [[x← q]]φ
}

.

Lemma: Expressiveness is equivalent to any of the following
conditions:

a) [[x← (do y← p;q)]]ψ =⇒ [[y← p]]wp(x← q,ψ),

b) [[x← (do y← p;q)]]ψ =⇒ (sp(y,p) =⇒ wp(x← q,ψ)),

c) {sp(y,p)} x← q {sp(x, do y← p;q)}.

Lemma: If the innocent submonad is the partiality monad then
expressiveness is equivalent to

sp(y,p)∧ sp(x,q) =⇒ sp(x, do y← p;q).

22 / 26
Troubles (2/3)

Monads can be given by equational theories: TA — set of terms
over variables from A, ret x — variable as term, binding —
substitution. E.g. finite powerset:

a+ (b+ c) = (a+ b) + c

a+ b = b+ a a+ a = a+ 0 = 0 + a = a

Definition: an equational theory is regular if every equation of it has
the variables occurring on the left- and right-hand sides.

Lemma: if T is given by a regular theory partiality monad is
expressive w.r.t. it.

Non-example: abelian group monad is non-regular (it has an
equation x− x = 0) and partiality monad is not expressive w.r.t. it.

Conjecture: partiality monad is expressive w.r.t. T iff T is
given by a regular theory.

23 / 26
Troubles (3/3)

How to express wp(x← f(y),φ) by a formula?

For the state monad:

• wp(x← get(l),φ) = do x← get(l);φ.

• In case of static locations: wp(put(v, l),φ) = φ ′ with
φ ′ obtained from φ by replacing every get(l) with ret v.

Otherwise:

wp
(
put(v, l),µX.λx.

(
get(x) = nil∨ do x← get(x);X(x)

)
(l)
)
=?

24 / 26
More Troubles

Consider the subdistribution monad:

TA = {d : A→ [0, 1] |
∑
x

d(x) 6 1}

It has a parametrised generic effect coinp : T2. This is not copyable:

do x← coinp;y← coinp; ret〈x,y〉
= [(1, 1) 7→ p ∗ p, (1, 2) 7→ p ∗ (1 − p),

(2, 1) 7→ p ∗ (1 − p), (2, 2) 7→ (1 − p) ∗ (1 − p)]

do x← coinp; ret〈x, x〉
= [(1, 1) 7→ p, (2, 2) 7→ (1 − p)]

Hence, the only innocent submonad is the partiality monad.
Therefore, e.g. sp(x, coin1/3) = (x = 1)∨ (x = 2) whereas it
had better be something like x = 1⊕1/3 x = 2.

25 / 26
Further Work

• Resolve the troubles.

• Do more case study: local states, quantum computations.

• Come up with a monadic treatment of probabilistic
computations.

The End
Thanks for your attention!

Gordon Plotkin and John Power. Adequacy for algebraic
effects. In Foundations of Software Science and
Computation Structures, FoSSaCS 2001, volume 2030 of
LNCS, pages 1–24. Springer, 2001.

Gordon Plotkin and John Power. Algebraic operations and
generic effects. Appl. Cat. Struct., 11:69–94, 2003.

	Appendix

