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Classical Hoare Logic

• Jundments: partial correctness assertions: {φ} p {ψ}
where

I φ (precondition) and ψ (postcondition) are
state-dependent logical assertions;

I p is a program over the underlying state.

• Logic: FOL + (Peano) arithmetic + conventional
operations (reading from the memory).

• Semantics: [[φ]], [[ψ]] : S→ {0, 1}, [[p]] : S→ S+ 1 where
S = L→ V (or S = L→ V + 1) is the state.

Given a state σ ∈ S:

σ |= {φ} p {ψ} ⇐⇒ (σ |= φ =⇒ ∃σ ′ = [[p]](σ). σ ′ |= ψ)
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Classical Hoare Logic: Some Examples

• {x > 1} x := x+ 1 {x > 2};

• always: {⊥} p {ψ} and {φ} p {>};
• more involved example (factorial):

{x = 1; i := 1}

while (i < n) do

i := i+ 1;

x := x ∗ i;
{x = n!}
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Classical Hoare Logic: Calculus

(skip)
{φ} skip {φ}

(assign)
{φ[a/x]} x := a {φ}

(seq)
{φ} p {ψ} {ψ} q {ξ}

{φ} p;q {ξ}

(if)
{φ∧ b} p {ψ} {φ∧ ¬b} q {ψ}

{φ} if b then p else q {ψ}

(while)
{φ∧ b} p {φ}

{φ} while b do p {φ∧ ¬b}

(weak)
φ⇒ φ ′ {φ ′} p {ψ ′} ψ ′ ⇒ ψ

{φ} p {ψ}
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Classical Hoare Logic: Properties

• Hoare logic as presented is sound:

Γ1, . . . , Γn ` Γ implies Γ1, . . . , Γn |= Γ .

Proof: routine verification (boring).

• Hore logic is incomplete (!) for |= {>} p {⊥} iff p does
not terminate (non-r.e.).

• Hoare logic is relatively complete or complete in sense of
Cook. That is:

|= {φ} p {ψ} iff Φ ` {φ} p {ψ}

where Φ is the set of all valid assertions.
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Classical Hoare Logic: Relative Completeness (1/3)

Weakest precondition wp(p,ψ) is the weakest assertion such that
{wp(p,ψ)} p {ψ}. Therefore:

{φ} p {ψ} ⇐⇒ (φ⇒ wp(p,ψ))

Scheme of the proof:

|= {φ} p {ψ}

 |= φ⇒ wp(p,ψ) (1)

 Φ ` φ⇒ wp(p,ψ) (2)

 Φ ` {φ} p {ψ} (3)

This amounts to the properties:

• Existence and uniqness of wp (1).
• Expressiveness: sufficient strength of the assertion logic to

characterize wp (2).
• Provability of {wp(p,ψ)} p {ψ} (3).
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Classical Hoare Logic: Relative Completeness (2/3)

Weakest precondition can be defined inductivelly by the clauses:

wp(skip,ψ) = ψ,

wp(x := a,ψ) = ψ[a/x],

wp(p;q,ψ) = wp(p, wp(q,ψ)),

wp(if b then p else q,ψ) = (b⇒ wp(p,ψ))∧ (¬b⇒ wp(q,ψ)),

wp(while b do p,ψ) =
∧
k>0

ξk where

ξ0 = true and ξk+1 = (b⇒ wp(p, ξk))∧ (¬b⇒ ψ).

It is provable by induction that this indeed the weakest precondition
and Φ ` {wp(p,ψ)} p {ψ}.

Note: the same story can be told in terms of strongest
postconditions sp(p,φ).
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Classical Hoare Logic: Gödel’s Hack

Note that wp(while b do p,ψ) as given is not expressible in
the language.

Let β(x1, x2, x3) = rem(x+ 1, 1 + (x3 + 1) ∗ x2) (Gödel’s
β-function).

The β-lemma: for any sequence of natural numbers
k1,k1, . . . ,kn, there are natural numbers b and c such that,
for every i 6 n, β(b, c, i) = ki.

Hence, a statement ∀k.∀n1, . . . ,nk. φ(ni) translates to
∀k. ∀a,b. φ(β(b, c, i)).
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Monads Enter

Recall that programs and assertions were interpreted over
S→ S+ 1 and S→ 2 correspondingly.

Let TA = S→ (S×A) + 1 (state monad)
and PA = S→ A+ 1 (reader monad).

Then ΩT = P1 = S→ 2 is a boolean algebra.

More examples:

• TA = A+ E (exeptions), PA = A+ 1, ΩT = 2;

• TA = P(A) (non-determinism), PA = A+ 1, ΩT = 2;

• TA = S→ P(S×A) (states + exeptions),
PA = S→ A+ 1, ΩT = S→ 2.

• . . .
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Monads for Generic Programming

Strong monad T: Underlying category C, endofunctor
T : C→ C, unit: η : Id→ T and Kleisli star

† : hom(A, TB)→ hom(TA, TB)

plus strength: τA,B : A× TB→ T(A× B).

Metalanguage of effects:

• TypeW ::=W | 1 | TypeW × TypeW | T(TypeW)

• Term construction (Cartesian operators omitted):

x : A ∈ Γ
Γ � x : A

Γ � t : A
Γ � f(t) : B

(f : A→ B ∈ Σ)

Γ � t : A
Γ � ret t : TA

Γ � p : TA Γ , x : A� q : TB

Γ � do x← p;q : TB
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Algebraic Operations

Definition: Given n ∈ N and a monad T over C, a natural
transformation αX : (TX)n → TX is an (n-ary) algebraic
operation if

α〈do x← pi;q〉i = do x← α〈pi〉i;q

Examples include:

• Exception raising: one constant throw : T0 → T .

• Finite nondeterminism: one constant nil : T0 → T and
one operation: choice : T2 → T . E.g. for P monad:

choice(nil,p) = choice(p,nil) = p.

• States: lookupl : T
V → T and updatel,vT → T with

l ∈ L, v ∈ V. E.g. for state monad:

updatel,v
(
lookupl〈p1, . . . ,p|V |〉

)
= updatel,v(pv).
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Generic Effects

Under mild assumptions algebraic operations are in
one-to-one correspondence with generic effects, i.e.
morphisms from hom(A, TB) [Plotkin and Power, 2001].

Algebraic operations Generic effects

lookup : TV → TL,
update : T → TL×V

get : L→ TV,
put : L× V → T1

nil : T0 → T1,
choice : T2 → T

nil0 : 1→ T0,
coin : 1→ T2

throw : T0 → TE throw0 : E→ T0

Notably exception handling is not algebraic.
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Fixpoint Computations and Order-Enrichment

Let 2 = 1 + 1, with C being distributive. We are targeting

(while)
Γ , x : A� φ : 2 Γ � p : TA Γ , x : A� q : TA

Γ � init x← p while φ do q : TA

Definition: A strong monad T over C is order-enriched if the
following conditions hold.

• Every hom(A, TB) carries a partial order v, with a bottom ⊥.
• Every hom(A, TB) has joins of all directed subsets and has

joins of all f,g such that f v h, g v h for some h.
• For any h ∈ hom(A ′,A) and any u ∈ hom(B× C, TB ′)

f 7→ f ◦ h, f 7→ u† ◦ f, f 7→ τ〈id, f〉.

preserve all existing joins (including ⊥).
• Kleisli star is Scott-continuous, i.e. if {fi | i ∈ I} is a directed

subset of hom(A, TB), then
⊔
i∈I
f
†
i =

(⊔
i∈I
fi
)†

.
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Innocence

Definition: Given an order-enriched monad T,

• Two programs p and q commute if
do x← p;y← q; ret〈x,y〉 = do y← p; x← q; ret〈x,y〉

• a program p is copyable w.r.t. T if
do x← p;y← p; ret〈x,y〉 = do x← p; ret〈x, x〉;
• a program p is weakly discardable w.r.t. T if

do y← p; ret ? v ret ?;

• T is innocent if it is commutative and any program over
it is weakly discardable and copyable.

In Nutshell: Innocent monads capture relatively well-behaved
computations, but possibly non-terminating.
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Innocent Monad for Assertions

Examples:

• Every enriched monad has the partiality monad as the
smalles innocent monad.

• The (partial) reader monad PA = S→ A+ 1 is innocent.

Theorem: Given an innocent monad P,

1. For any two programs p : P1 and q : P1,

puq = do p;q = do q;p.

2. The object P1 carries a complete Heytling algebra whose
underlying distributive lattice structure (δ,υ, ε, ρ) agrees
with the order-enrichment as follows: ⊥A,1 = δ ◦ !A,
ftg = υ ◦ 〈f,g〉, >A,1 = ε ◦ !A, fug = ρ ◦ 〈f,g〉.
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A Simple Imperative Metalanguage

(var)
x : A ∈ Γ
Γ � x : A

(op)
f : A→ B ∈ Σ Γ � t : A

Γ � f(t) : B
(1)

Γ � ? : 1

(pair)
Γ � t : A Γ � u : B

Γ � 〈t,u〉 : A× B
(pr1)

Γ � t : A× B
Γ � pr1 t : B

(pr2)
Γ � t : A× B
Γ � pr2 t : B

(0)
Γ � 0 : 2

(1)
Γ � 1 : 2

(if)
Γ � b : 2 Γ � s : A Γ � t : A

Γ � if b thens else t : A

(do)
Γ � p : TA Γ , x : A� q : TB

Γ � do x← p;q : TB
(ret)

Γ � p : A

Γ � retp : T♦A

(♦)
Γ � p : T♦A

Γ � p : TA
(while)

Γ � φ : 2 Γ � p : TA Γ , x : A� q : TA

Γ � init x← p while φ do q : TA
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Assertions

(>)
Γ �> : ΩT

(∧)
Γ � φ : ΩT Γ �ψ : ΩT

Γ � φ∧ψ : ΩT
(∃) Γ , x : A� φ : ΩT

Γ � ∃x.φ : ΩT

(⊥)
Γ �⊥ : ΩT

(∨)
Γ � φ : ΩT Γ �ψ : ΩT

Γ � φ∨ψ : ΩT
(∀) Γ , x : A� φ : ΩT

Γ � ∀x.φ : ΩT

(⇒)
Γ � φ : ΩT Γ �ψ : ΩT

Γ � φ⇒ ψ : ΩT

(cast)
Γ � p : T♦A Γ , x : A� φ : ΩT

Γ � do x← p;φ : ΩT
(pred)

A→ ΩT ∈ Γ
Γ � X : A→ ΩT

(λ)
Γ , x : A� t : ΩT

Γ � λx. t : A→ ΩT
(app)

Γ � t : A Γ � s : A→ ΩT

Γ � s(t) : ΩT

(µ)
Γ ,X : A→ ΩT � φ : A→ ΩT

Γ � µX.φ : A→ ΩT
(ν)

Γ ,X : A→ ΩT � φ : A→ ΩT

Γ � νX.φ : A→ ΩT
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Hoare Logic

We define global judjments [[x← p]]φ by the equivalence:

[[x← p]]φ ⇐⇒ (do x← p;φ; ret x) = p.

Then let {φ}x← p{ψ} = [[φ; x← p]]ψ.

Some rules:

{φ} x← p {ψ}

{φ} x← p {χ}

{φ} x← p {ψ∧ χ}

{ψ∧ φ?} x← p {χ}

{ψ∧ ¬φ?} x← q {χ}

{ψ} x← (if φ thenp else q) {χ}

{φ} y← q {χ}

{ψ} y← q {χ}

{φ∨ψ} y← q {χ}

{ψ} x← p {χ}

{χ∧ φ?} x← q {χ}

{ψ} x← (init x← p while φ do q) {χ∧ ¬φ}
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Relative Completeness (1/2)

Let us define the weakest precondition:

wp(y← q,ψ) =
⊔{

φ | {φ} y← q {ψ}
}

.

The desirable properties are:

wp1. wp(x← ret t,ψ) ⇐⇒ ψ[t/x].

wp2. wp(x← f(t),ψ) ⇐⇒ wp(x← f(z),ψ)[t/z], with z — any
fresh variable

wp3. wp(x← (do y← p;q),ψ) ⇐⇒ wp(y← p,wp(x← q,ψ))

wp4. wp(x← (if b thenp else q),ψ) ⇐⇒
(b?⇒ wp(x← p,ψ))∧ (b̄?⇒ wp(x← q,ψ))

wp5. wp(x← (while b do x← p),ψ) ⇐⇒
νX.(λx.b?⇒ wp(x← p,X(x))∧ b̄?⇒ ψ)(x)

Theorem: If wp3 holds (let call it expressiveness) then so do the
remaining properties.
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Relative Completeness (2/2)

Theorem (Relative Completeness): Let T be and enriched
monad; let P be an innocent submonad of it. Suppose

1. P is expressive w.r.t. T;

2. for every f : A→ TB ∈ ΣT and every assertion φ the
weakest precondition wp(x← f(y),ψ) can be
represented by a formula of the assertion language.

Then T,P |= {φ} x← p {ψ} iff Φ∪∆ ` {φ} x← p {ψ} where

• Φ is the set of all assertions valid in P;

• ∆ is the set of formulas

{wp(x← f(y),ψ)} x← p {ψ}.
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Troubles (1/3)

What exactly expressiveness amounts to?

Let us introduce the strongest postcondition as follows:

sp(x,q) =
l{

φ | [[x← q]]φ
}

.

Lemma: Expressiveness is equivalent to any of the following
conditions:

a) [[x← (do y← p;q)]]ψ =⇒ [[y← p]]wp(x← q,ψ),

b) [[x← (do y← p;q)]]ψ =⇒ (sp(y,p) =⇒ wp(x← q,ψ)),

c) {sp(y,p)} x← q {sp(x, do y← p;q)}.

Lemma: If the innocent submonad is the partiality monad then
expressiveness is equivalent to

sp(y,p)∧ sp(x,q) =⇒ sp(x, do y← p;q).
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Troubles (2/3)

Monads can be given by equational theories: TA — set of terms
over variables from A, ret x — variable as term, binding —
substitution. E.g. finite powerset:

a+ (b+ c) = (a+ b) + c

a+ b = b+ a a+ a = a+ 0 = 0 + a = a

Definition: an equational theory is regular if every equation of it has
the variables occurring on the left- and right-hand sides.

Lemma: if T is given by a regular theory partiality monad is
expressive w.r.t. it.

Non-example: abelian group monad is non-regular (it has an
equation x− x = 0) and partiality monad is not expressive w.r.t. it.

Conjecture: partiality monad is expressive w.r.t. T iff T is
given by a regular theory.
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Troubles (3/3)

How to express wp(x← f(y),φ) by a formula?

For the state monad:

• wp(x← get(l),φ) = do x← get(l);φ.

• In case of static locations: wp(put(v, l),φ) = φ ′ with
φ ′ obtained from φ by replacing every get(l) with ret v.

Otherwise:

wp
(
put(v, l),µX.λx.

(
get(x) = nil∨ do x← get(x);X(x)

)
(l)
)
=?
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More Troubles

Consider the subdistribution monad:

TA = {d : A→ [0, 1] |
∑
x

d(x) 6 1}

It has a parametrised generic effect coinp : T2. This is not copyable:

do x← coinp;y← coinp; ret〈x,y〉
= [(1, 1) 7→ p ∗ p, (1, 2) 7→ p ∗ (1 − p),

(2, 1) 7→ p ∗ (1 − p), (2, 2) 7→ (1 − p) ∗ (1 − p)]

do x← coinp; ret〈x, x〉
= [(1, 1) 7→ p, (2, 2) 7→ (1 − p)]

Hence, the only innocent submonad is the partiality monad.
Therefore, e.g. sp(x, coin1/3) = (x = 1)∨ (x = 2) whereas it
had better be something like x = 1⊕1/3 x = 2.
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Further Work

• Resolve the troubles.

• Do more case study: local states, quantum computations.

• Come up with a monadic treatment of probabilistic
computations.



The End
Thanks for your attention!
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