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Formal Specification and Verification of Software

formal methods are a scientific approach to software engineering,
aiming towards

a clear and precise description (specification)
a proof of correct behavior (verification)

of a software system

while difficult, formal verification is employed in areas

where safety and security are critical: e.g. medical systems, aicraft
systems
with high cost of failure: e.g. hardware industry

algebraic specifications:

programs are modelled as models of some logical system
CASL is a de-facto standard language for specification of functional
requirements
Hets provides tool support for heterogeneous specifications
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Heterogeneous Specifications

allow the user to flexibly choose one of the multitude of logical
systems at hand according to his knowledge and to the current
problem

are particularly used in specification of complex systems:

change of formalism between different levels of developement
viewpoint specification: different aspects of the same component of
a logical system are specified in different formalisms

various logic-specific tools can be employed in the verification of
the system
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HETS

parsing, static analysis and proof management tool for
heterogeneous multi-logic specification

sound integration of heterogeneity, using institutions

flexible selection of tool-supported sublanguages suitable for
subproblems

systematic connection of new formalisms to tools via translations

easy plug-in of new formalisms and translations

Mihai Codescu (FAU Erlangen-Nürnberg)Integrating VSE’s Refinement in Hets November 6th, 2012 5 / 26



Logics Supported in Hets

general-purpose logics:
Propositional, QBF, SoftFOL, CASL, HasCASL, HOL-Light, FPL

logical frameworks:
Isabelle, LF, DFOL, Framework

ontologies and constraint languages:
CASL-DL, OWL2, CommonLogic, RelScheme, ConstraintCASL

logics of reactive systems:
CspCASL, CoCASL, ModalCASL, ExtModal, Maude

programming languages:
Haskell, VSE

logics of specific tools:
Reduce, DMU (CATIA), Adl, EnCL, FreeCAD
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HetCASL

specification libraries

architectural refinements

structured specifications

Grothendieck institution

the graph of logics is a
parameter of the language

syntax for specifying the
current logic and for
translations between logics

model-theoretic semantics

Hets supports other logic-specific (e.g. Maude, Twelf, Common
Logic, Haskell) or even heterogeneous (DOL) module systems.
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Heterogeneous Development Graphs

Heterogeneous structured specifications are mapped into heterogeneous
development graphs [Mossakowski/Autexier/Hutter 2001]:

nodes correspond to individual specification modules

definition links correspond to imports of modules

theorem links express proof obligations

Development graphs

are a tool for management and reuse of proofs

come with a sound and complete (up to an oracle for conservative
extensions) proof calculus:

decompose global theorem links semi-automatically into local ones
choose logic specific provers for local proof goals
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Logics as Institutions

Institutions are a model-theoretical formalization of logical systems
[Goguen/Burstall 1984]
An institution consists of:

a category Sign of signatures;

a functor Sen : Sign→ Set, giving a set Sen(Σ) of Σ-sentences for
each signature Σ ∈ |Sign|. Notation: Sen(σ)(ϕ) is written σ(ϕ);

a functor Mod : Signop → Cat, giving a category Mod(Σ) of
Σ-models for each Σ ∈ |Sign|. Notation: Mod(σ)(M ′) is written
M ′|σ;

for each Σ ∈ |Sign|, a satisfaction relation
|=Σ ⊆ |Mod(Σ)| × Sen(Σ)

such that for any σ : Σ→ Σ′, ϕ ∈ Sen(Σ) and M ′ ∈Mod(Σ′):

M ′ |=Σ′ σ(ϕ) ⇐⇒ M ′|σ |=Σ ϕ [Satisfaction condition]
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First-order logic: Syntax

A signature Σ consists of:

a set of sorts S,
family Fw,s of sets of function symbols indexed by arity w ∈ S∗ and
result sort s ∈ S,
family Pw of sets of predicate symbols with arity w ∈ S∗.

terms TΣ(X) with variables from (Xs)s∈S :

x ∈ Xs =⇒ x ∈ TΣ(X)s,
f(t1, . . . , tn) ∈ TΣ(X)s, for each f ∈ Fw,s and ti ∈ TΣ(X)wi

.

atomic sentences:

p(t1, . . . , tn),
t = t′.

sentences:

quantification and usual Boolean connectives on top of atomic
sentences
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First-order logic: Model Theory

A model M of a signature gives:

for each sort s, a non-empty carrier set Ms,
for each function symbol f : w → s, a function Mf : Mw →Ms and
for each predicate symbol p : w, a relation Mp ⊆Mw.

For ΣMonoid = ({univ}, {e : univ, ◦ : univ × univ → univ}), the
monoid of natural numbers with addition N is given by

Nuniv = {0, 1, . . .}
N◦ = +
Ne = 0

satisfaction is defined inductively, using intepretation of terms:

Mf(t1,...,tn) = Mf (Mt1 , . . . ,Mtn)
M |= t = t′ iff Mt = M ′t
M |= p(t1, . . . , tn) iff Mp(Mt1 , . . . ,Mtn) holds
the usual way for Boolean connectives and quantification

Mihai Codescu (FAU Erlangen-Nürnberg)Integrating VSE’s Refinement in Hets November 6th, 2012 11 / 26



First-order logic: Model Theory

A model M of a signature gives:

for each sort s, a non-empty carrier set Ms,
for each function symbol f : w → s, a function Mf : Mw →Ms and
for each predicate symbol p : w, a relation Mp ⊆Mw.

For ΣMonoid = ({univ}, {e : univ, ◦ : univ × univ → univ}), the
monoid of natural numbers with addition N is given by

Nuniv = {0, 1, . . .}
N◦ = +
Ne = 0

satisfaction is defined inductively, using intepretation of terms:

Mf(t1,...,tn) = Mf (Mt1 , . . . ,Mtn)
M |= t = t′ iff Mt = M ′t
M |= p(t1, . . . , tn) iff Mp(Mt1 , . . . ,Mtn) holds
the usual way for Boolean connectives and quantification

Mihai Codescu (FAU Erlangen-Nürnberg)Integrating VSE’s Refinement in Hets November 6th, 2012 11 / 26



First-order logic: Model Theory

A model M of a signature gives:

for each sort s, a non-empty carrier set Ms,
for each function symbol f : w → s, a function Mf : Mw →Ms and
for each predicate symbol p : w, a relation Mp ⊆Mw.

For ΣMonoid = ({univ}, {e : univ, ◦ : univ × univ → univ}), the
monoid of natural numbers with addition N is given by

Nuniv = {0, 1, . . .}
N◦ = +
Ne = 0

satisfaction is defined inductively, using intepretation of terms:

Mf(t1,...,tn) = Mf (Mt1 , . . . ,Mtn)
M |= t = t′ iff Mt = M ′t
M |= p(t1, . . . , tn) iff Mp(Mt1 , . . . ,Mtn) holds
the usual way for Boolean connectives and quantification

Mihai Codescu (FAU Erlangen-Nürnberg)Integrating VSE’s Refinement in Hets November 6th, 2012 11 / 26



Translations as Institution Comorphisms

An institution comorphism [Goguen/Rosu 2000] from I to J is a triple
(Φ, α, β) where

Φ is a functor mapping signatures of I to signatures of J

αΣ naturally maps sentences in I over Σ to sentences in J over
Φ(Σ)

βΣ naturally reduces Φ(Σ)-models in J to Σ-models in I

such that truth is invariant under translation:

βΣ(M) |=I
Σ e ⇐⇒ M |=J

Φ(Σ) αΣ(e)

I J

Σ Φ(Σ)

SenI(Σ) SenJ(Φ(Σ))

ModI(Σ) ModJ(Φ(Σ))

Φ

αΣ

βΣ
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Grothendieck Institutions

Given an indexed coinstitution I : Indop−→CoIns, we define the
Grothendieck institution [Diaconescu 2002, Mossakowski 2002] I# as
follows:

(i,Σ1)
d:j→i // (j,Φd(Σ1))

σ // (j,Σ2)

Seni(Σ1)
αd

Σ1 // Senj(Φd(Σ1))
Senj(σ) // Senj(Σ2)

|=i
Σ1

|=j
Σ2

Modi(Σ1) Modj(Φd(Σ1))
βΣ1oo Modj(Σ2)

Modj(σ)oo
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Verification Support Environment (VSE)

industrial-strength methodology for specification and verification
of large scale software systems, based on a refinement process

provides an interactive deductive component, based on a Gentzen
style natural deduction calculus for dynamic logic and supports
automatic code generation

successfully used [HutterEtAl. 2000] in projects such as the
control system of a heavy robot facility, a formal security policy
model conforming to the German signature law and protocols for
chip card based biometric identification.
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Institution of Dynamic Logic (DynL)

signatures: first-order signatures + procedure symbols

models: first-order structures + procedures as relations

sentences:

the usual dynamic logic formulas, with imperative programs as
modalities
procedure definitions assigning programs to procedure symbols
sort generation constraints with restrictions

satisfaction:

Kripke-like satisfaction for dynamic logic formulas
replacing a procedure call with its body should not change the result
of a program + some minimality condition for recursive functions
the elements of the sort satisfying the restriction are generated by
the constructors
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Institution of Dynamic Logic - signatures

A signature Σ = (S, F, P, PR) consists of:

a FOL signature (S, F, P )
a family PRw,v of procedure symbols with input arguments w ∈ S∗
and output arguments v ∈ S∗
some procedure symbols in PRw,s, where s ∈ S, are marked as
functional, denoted FP
a subsignature for Boolean values

A signature morphism maps corresponding symbols such that
functional symbols are mapped to functional symbols and the map
between procedure symbols is injective. Booleans are mapped
identically by signature morphisms.
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Institution of Dynamic Logic - terms and programs

for a signature Σ = (S, F, P, PR) and a sorted set of variables X,
the terms are the usual first-order terms over the signature
(S, F ∪ FP, P ) with variables in X

for a signature Σ = (S, F, P, PR), the set of Σ-programs is the
smallest set containing

abort, skip
x := t
declare x : s = t, declare x : s = t
α;β
if Φ then α else β fi
while Φ do α od
pr(x1, . . . , xn; y1, . . . , yn)
return t
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Institution of Dynamic Logic - sentences

For a signature Σ = (S, F, P, PR), Sen(Σ) contains:

dynamic logic formulas:
T and F
first-order (S, F, P )-formulas
[α]e, 〈α〉e, ¬e, e1 ∧ e2 and ∀x : s • e

procedure definitions:

defprocs
procedure pr1(x1

1, . . . , x
1
n1

; y1
1, . . . , y

1
m1

)α1

. . .
procedure prk(x

k
1, . . . , x

k
nk

; yk1 , . . . , y
k
mk

)αk
defprocsend

restricted sort generation constraints:

generated types
s1 ::= p1

1(. . .)|p1
2(. . .)| . . . |p1

n(. . .) restricted by r1

. . .
sk ::= pk1(. . .)|pk2(. . .)| . . . |pkm(. . .) restricted by rk
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Institution of Dynamic Logic - models and satisfaction

For a signature Σ = (S, F, P, PR), a model is a first-order structure
such that procedure symbols are interpreted as relations, functional
procedures as total functions and Booleans in the standard way.
A model M satisfies:

each definition of a procedure pri if

M |= ∀xi1, . . . , xini
, ri1, . . . , r

i
mi

:

(〈pri(xi1, . . . , xin; yi1, . . . , y
i
m)〉yi1 = ri1 ∧ · · · ∧ yimi

= rimi
)

⇔ 〈α〉yi1 = ri1 ∧ · · · ∧ yimi
= rimi

a RSGC s ::= p1(. . .)|p2(. . .)| . . . |pn(. . .) restricted by r if the
subset of Ms on which r terminates is generated by the
constructors pi
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Satisfaction (continued)

Kripke-like semantics for dynamic logic formulas in a model M :

states are partial functions taking variables to values

interpretation of a term in a state is defined as expected

semantics of a program is a predicate on two states, denoted
JαKM , e.g.:

qJx := τKMr ⇔ r = q[x : s← τM,q] and τM,q is defined, where
s = sort(τ)
qJif ε thenα elseβ fiKMr ⇔ (q |= ε and qJαKMr) or (q |=
¬ε and qJβKMr)

satisfaction is first defined on a program state r:

M, r |= p(τ1, . . . τn)⇔ for all i = 1, . . . , n, τM,r
i is defined and

Mp(τM,r
1 , . . . , τM,r

n )
M, r |= [α]e⇔ for all program states q with rJαKMq: M, q |= e

finally M |= e iff M.r |= e for each state r
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Refinement in VSE

first-order specification of requirements

DynL specification of the implementation:

imports first-order specification of data
procedure definitions
for each sort, designated restriction and observational congruence

a mapping assigns to each symbol the procedure symbol
implementing it

VSE proves correctness semi-automatically
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VSE’s Refinement in Hets

The refinement notion of VSE is represented as a comorphism from
CASL to DynL such that:

signatures:

for each sort we introduce procedure symbols for equality and
restriction formula and axioms for their expected behavior
for each function/predicate symbol we introduce new procedure
symbols, loosely specified

translation of first-order sentences is based on translation of terms
into programs implementing the representation of the term

dynamic-logic models are reduced by performing the
submodel-quotient construction.
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CASL2VSERefine - syntax

for each sort s:
sort s
eqs ∈ PR[s,s],[Bool]

rs ∈ PR[s],[]

and sentences:
〈rs(x)〉T ∧ 〈rs(y)〉T ⇒ 〈eqs(x, y; e)〉T
〈rs(x)T 〉 ⇒ 〈eqs(x, x; e)〉e = T
〈rs(x)〉T ∧ 〈rs(y)〉T ∧ 〈eqs(x, y; e)〉e = T ⇒ 〈eqs(y, x; e)〉e = T
〈rs(x)〉T ∧ 〈rs(y)〉T ∧ 〈rs(z)〉T ∧ 〈eqs(x, y; e)〉e =
T ∧ 〈eqs(y, z; e)〉e = T ⇒ 〈eqs(x, z; e)〉e = T

for each f ∈ Fs→t, f ∈ PR[s],[t] and sentences
〈rs(x)〉T ∧ 〈rs(y)〉T ∧ 〈eqs(x, y; e)〉e = T ⇒ 〈y1 := f(x)〉〈y2 :=
f(y)〉〈eqt(y1, y2; e)〉e = T
〈rs(x)〉T =⇒ 〈f(x; y)〉〈rt(y)〉T

for each p ∈ Ps, p ∈ PR[s],[Bool] and sentences
〈rs(x)〉T ∧〈rs(y)〉T ∧〈eqs(x, y; e)〉e = T ⇒ 〈p(x; r1)〉〈p(y; r2)〉r1 = r2
〈rs(x)〉T ⇒ 〈p(x; e)〉T
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CASL2VSERefine - models

Given a CASL signature Σ = (S, F, P ) and a model M ′ of
Φ(Σ) = ((S, ∅, ∅, PR), E), let M = βΣ(M ′):

Ms = Mrs/≡ where:

Mrs is the subset of M ′s for which rs holds
a ≡ b is equivalent to M ′, t |= 〈eqs(x1, x2; y)〉y = true whenever
t(x1) = a and t(x2) = b

for each function symbol f , Mf (a1, . . . , an) = b iff
M ′, t |= 〈f(x1, . . . , xn; y)〉y = z when t(xi) = ai and t(z) = b.

for each predicate symbol p, Mp(a1, . . . , an) holds iff
M ′, t |= 〈p(x1, . . . , xn; y)〉y = true.
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CASL2VSERefine - sentences

terms are translated into programs that compute their
representation:

x 7→ x := x
f(t1, . . . , tn) 7→ α1; . . . ;αn; a := f(y1, . . . , yn)

sentences are translated inductively:

t1 = t2 7→ 〈α1;α2; eqs(y1, y2; y)〉y = T
∀x : s.e 7→ ∀x : s.〈rs(x)〉true⇒ α(e)
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Natural Numbers as Lists of Bits

view Binary :
simpnats to Nats Impl =
logic → CASL2VSERefine,
nats 7→ bin,
gn restr nats 7→ nlz,
gn eq nats 7→ eq,
gn zero n 7→ i zero,
gn succ n 7→ i succ,
gn prdc n 7→ i prdc,
gn add n 7→ i add
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